Integrative Cancer Genomics: Drivers, Pathways and Drugs

综合癌症基因组学:驱动因素、途径和药物

基本信息

  • 批准号:
    8534063
  • 负责人:
  • 金额:
    $ 35.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The emergence of cancer genomics, combined with increased understanding of the molecular basis of oncogenesis, has stimulated hope that treatment will improve by becoming more targeted and individualized in nature. Cancer genomics studies established a number of critical cancer genes, leading to a number of successful targeted therapies (e.g. Gleevec, Herceptin and Plexxikon). Despite these successes, most cancers do not have a targeted therapy and when one exists, response is highly variable, even among patients that share the targeted mutation and tumor type. To move cancer into the era of personalized therapies, it becomes important to identify the alterations driving tumor progression in each tumor, determine the network that links these aberrations, and identify factors that predict sensitivity to targeted therapies. As projects such as The Cancer Genome Atlas (TCGA) amass cancer cell genomes at a breathtaking pace, a staggering genetic complexity is revealed. To interpret cancer genomes, a key computational challenge is to separate the wheat from the chaff and define both what are the key alterations likely to be functionally driving cancer and then, after defining such genes, begin to identify mechanisms of action and therapeutic implications. Leveraging components from our published methods, CONEXIC (Akavia et.al Cell 2010) and LirNet (Lee et.al, PLOS Gen 2009), we will develop machine-learning algorithms that integrate cancer genomic data to do just that. We will apply the methods we develop to melanoma, glioblastoma, ovarian, breast and colon cancer and experimentally follow up on our computational findings, towards a better understanding of each of these deadly cancers. The approaches developed in this grant will accelerate discovery to rapidly extract the maximal value from modern genomic studies and help carry cancer genomics from the diagnostic to the therapeutic realm.
描述(申请人提供):癌症基因组学的出现,加上对肿瘤发生的分子基础的了解的增加,激发了人们的希望,即治疗将通过变得更加有针对性和个体化而得到改善。癌症基因组学研究确定了一些关键的癌症基因,导致了一些成功的靶向治疗(例如格列卫、赫赛汀和Plexxikon)。尽管取得了这些成功,但大多数癌症没有靶向治疗,即使有靶向突变和肿瘤类型的患者,反应也非常不同。为了将癌症带入个性化治疗的时代,重要的是确定每个肿瘤中驱动肿瘤进展的变化,确定连接这些异常的网络,并确定预测靶向治疗敏感性的因素。随着癌症基因组图谱(TCGA)等项目以惊人的速度积累癌细胞基因组,一个惊人的遗传复杂性被揭示出来。为了解释癌症基因组,一个关键的计算挑战是将小麦和谷壳分开,并定义可能在功能上导致癌症的关键变化,然后在定义这些基因后,开始识别作用机制和治疗意义。利用我们公布的方法CONEXIC(Akavia et.al Cell 2010)和LirNet(Lee et.al,PLOS Gen 2009)中的组件,我们将开发集成癌症基因组数据的机器学习算法来实现这一点。我们将把我们开发的方法应用于黑色素瘤、胶质母细胞瘤、卵巢癌、乳腺癌和结肠癌,并通过实验跟踪我们的计算结果,以更好地了解这些致命的癌症。这笔赠款中开发的方法将加速发现,迅速从现代基因组研究中提取最大价值,并帮助将癌症基因组学从诊断领域带入治疗领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dana Pe'er其他文献

Dana Pe'er的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dana Pe'er', 18)}}的其他基金

Shared Resource Core: Computational and technology development for spatial expression analysis.
共享资源核心:空间表达分析的计算和技术开发。
  • 批准号:
    10525196
  • 财政年份:
    2022
  • 资助金额:
    $ 35.81万
  • 项目类别:
Shared Resource Core: Computational and technology development for spatial expression analysis.
共享资源核心:空间表达分析的计算和技术开发。
  • 批准号:
    10705800
  • 财政年份:
    2022
  • 资助金额:
    $ 35.81万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10477053
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
  • 批准号:
    10477056
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Data Processing, Analysis and Modeling Unit
数据处理、分析和建模单元
  • 批准号:
    10001477
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
  • 批准号:
    10001475
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
  • 批准号:
    10249192
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10001472
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10249190
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
Data Processing, Analysis and Modeling Unit
数据处理、分析和建模单元
  • 批准号:
    10477057
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了