Genome-wide studies to identify markers of artemisinin-resistant malaria
全基因组研究以确定青蒿素耐药性疟疾的标志物
基本信息
- 批准号:8503178
- 负责人:
- 金额:$ 45.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAntimalarialsAreaArtemisininsBiological AssayCambodiaCandidate Disease GeneChloroquine resistanceChromosomesClinical ResearchClinical TrialsCombined Modality TherapyConduct Clinical TrialsContainmentCountryDataDevelopmentDiseaseDrug usageFalciparum MalariaFolic Acid AntagonistsGenesGeneticGenetic PolymorphismGenomeGenomicsGenotypeGoalsHalf-LifeInvestmentsLaosLocationMalariaMapsMeasuresMeta-AnalysisMolecularMutationMyanmarOutcomeParasite resistanceParasitemiaParasitesPharmaceutical PreparationsPhenotypePilot ProjectsPlasmodium falciparumPopulationPopulation ControlReadingReportingResistanceSamplingSingle Nucleotide PolymorphismSiteSoutheastern AsiaTestingThailandTimeVietnamWorkanalytical methodartemisinineartesunatebasecandidate markerclinical phenotypegenome wide association studymolecular markernext generation sequencingparasite genomepublic health relevanceresponsetool
项目摘要
DESCRIPTION (provided by applicant):
Highly effective artemisinin-based antimalarial drugs are used worldwide and have contributed to reductions in the malaria burden in many areas. Artemisinin-resistant Plasmodium falciparum malaria has emerged in western Cambodia and its potential spread threatens to reverse recent gains against malaria and to abort plans for a renewed global eradication campaign. Ongoing efforts to contain artemisinin-resistant malaria are hampered by the lack of tools to gauge the extent and direction of its spread. Presently, only laborious clinical trials can reliably measure resistance. A molecular assay to detect markers of artemisinin resistance would be a highly valuable surveillance tool, but the genetic basis of resistance is unknown. We propose genome-wide association studies (GWAS) that aim to identify molecular markers that can be used to track and contain artemisinin-resistant parasites before they spread globally. The work will be accomplished in two aims. First, we will use a dense panel of single nucleotide polymorphisms (SNPs) to map regions of the P. falciparum genome that are associated with artemisinin resistance. To accomplish this, we will use an established SNP- calling pipeline to determine genotypes at ~421,000 SNPs from short-read sequencing data in parasites collected during completed trials of artemisinin efficacy, and we will estimate the association between parasite genotypes and the amount of time it takes to reduce parasitemia by half following artemisinin treatment (i.e. parasite clearance half-life). Associations will be estimated in two independent sample sets, and meta-analysis will be performed to validate genomic regions associated with artemisinin resistance. In the second aim, we will identify and prioritize candidate genes within genomic regions identified in Aim 1 and use next-generation sequencing data to identify polymorphisms within high-priority genes and their association with parasite clearance half-life. If successful, this project will result in the development of a rapid assay to detect candidate markers of artemisinin resistance in subsequent candidate gene association studies, as well as data to begin the functional characterization of candidate genes to better understand the mechanisms underlying resistance.
描述(由申请人提供):
世界各地都在使用以青蒿素为基础的高效抗疟疾药物,这些药物有助于减轻许多地区的疟疾负担。柬埔寨西部出现了具有青蒿素抗药性的恶性疟原虫,它的潜在传播有可能逆转最近在防治疟疾方面取得的成果,并使新一轮全球根除运动的计划流产。由于缺乏工具来衡量其传播的程度和方向,目前遏制青蒿素抗药性疟疾的努力受到阻碍。目前,只有费力的临床试验才能可靠地测量耐药性。检测青蒿素耐药性标记的分子检测将是一种非常有价值的监测工具,但耐药性的遗传基础尚不清楚。我们提出了全基因组关联研究(GWAS),旨在确定可用于在青蒿素抗性寄生虫全球传播之前跟踪和遏制它们的分子标记。这项工作将通过两个目标来完成。首先,我们将使用一组密集的单核苷酸多态(SNPs)来定位恶性疟原虫基因组与青蒿素耐药性相关的区域。为了实现这一目标,我们将使用已建立的SNP调用渠道,从完成青蒿素疗效试验期间收集的寄生虫短读测序数据中确定~421,000个SNPs的基因型,并估计寄生虫基因型与青蒿素治疗后将寄生虫血症减少一半所需时间(即寄生虫清除半衰期)之间的关联。将在两个独立的样本集中评估相关性,并将进行荟萃分析以验证与青蒿素耐药性相关的基因组区域。在第二个目标中,我们将确定目标1中确定的基因组区域内的候选基因并确定其优先顺序,并使用下一代测序数据来确定高优先级基因中的多态及其与寄生虫清除半衰期的关联。如果成功,该项目将导致开发一种快速检测方法,在随后的候选基因关联研究中检测青蒿素耐药性的候选标记,以及开始对候选基因进行功能表征以更好地了解耐药性的机制的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHANNON Takala Harrison其他文献
SHANNON Takala Harrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHANNON Takala Harrison', 18)}}的其他基金
Impact of infection complexity on P. falciparum sexual commitment and gametocytemia
感染复杂性对恶性疟原虫性承诺和配子体血症的影响
- 批准号:
10681571 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Genomic and geospatial analyses of malaria parasite migration to inform elimination
疟疾寄生虫迁移的基因组和地理空间分析为消除提供信息
- 批准号:
10577799 - 财政年份:2020
- 资助金额:
$ 45.41万 - 项目类别:
Genomic and geospatial analyses of malaria parasite migration to inform elimination
疟疾寄生虫迁移的基因组和地理空间分析为消除提供信息
- 批准号:
10349517 - 财政年份:2020
- 资助金额:
$ 45.41万 - 项目类别:
Genome-wide studies to identify markers of artemisinin-resistant malaria
全基因组研究以确定青蒿素耐药性疟疾的标志物
- 批准号:
9011992 - 财政年份:2013
- 资助金额:
$ 45.41万 - 项目类别:
Genome-wide studies to identify markers of artemisinin-resistant malaria
全基因组研究以确定青蒿素耐药性疟疾的标志物
- 批准号:
8626355 - 财政年份:2013
- 资助金额:
$ 45.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant