Gene duplication in the evolution of novel phenotypes and human disease

新表型和人类疾病进化中的基因复制

基本信息

  • 批准号:
    8536143
  • 负责人:
  • 金额:
    $ 2.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-16 至 2014-01-01
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Gene duplication is a key source of genetic novelty, which in the best case leads to the acquisition of advantageous phenotypes, and in the worst results in disease. Functional duplicate genes can be maintained in the genome via three distinct processes: 1) the acquisition of a novel function in one copy (neofunctionalization), 2) the division of ancestral functions among copies (subfunctionalization), or 3) the preservation of ancestral functions in all copies (conservation). Despite the importance of gene duplications in both evolution and disease, little is known about the relative frequencies or mechanisms of each of these processes. To address these questions, this proposal will utilize complementary high-throughput experimental and computational approaches to investigate the correlated sequence and expression evolution of duplicate genes in three closely-related species of Drosophila. In particular, this project is subdivided into three specific aims. First, it will identify recent gen duplications via comparative genome analysis of three closely-related species of Drosophila. Second, it will use gene expression as a proxy for function to disentangle the processes of neofunctionalization, subfunctionalization, and conservation in the maintenance of young duplicate genes in Drosophila. Third, from intra-species polymorphism data, it will infer the evolutionary forces driving each of these processes. Due to the central role Drosophila has played as a model organism in genetic research, findings from this study will likely be applicable to a wide range of organisms, enhancing our understanding of both the evolution of novel phenotypes and the genetic basis of duplication-associated human diseases.
描述(由申请人提供):基因复制是遗传新奇的关键来源,其在最好的情况下导致获得有利的表型,而在最坏的情况下导致疾病。功能性重复基因可以通过三种不同的过程在基因组中维持:1)在一个拷贝中获得新功能(新功能化),2)在拷贝之间划分祖先功能(亚功能化),或3)在所有拷贝中保留祖先功能(保守)。尽管基因复制在进化和疾病中都很重要,但人们对这些过程的相对频率或机制知之甚少。为了解决这些问题,该提案将利用互补的高通量实验和计算方法来研究果蝇三个密切相关物种中重复基因的相关序列和表达进化。该项目具体分为三个目标。首先,它将通过对三种密切相关的果蝇物种进行比较基因组分析来确定最近的基因重复。第二,它将使用基因表达作为功能的代理,以解开新功能化,亚功能化,并在维护年轻的果蝇重复基因的保护过程。第三,从物种内多态性数据,它将推断驱动这些过程的进化力量。由于果蝇在遗传学研究中作为模式生物发挥了核心作用,这项研究的结果可能适用于广泛的生物体,增强了我们对新表型进化和复制相关人类疾病遗传基础的理解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raquel Assis其他文献

Raquel Assis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raquel Assis', 18)}}的其他基金

Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
  • 批准号:
    10625833
  • 财政年份:
    2021
  • 资助金额:
    $ 2.44万
  • 项目类别:
Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
  • 批准号:
    10458725
  • 财政年份:
    2021
  • 资助金额:
    $ 2.44万
  • 项目类别:
Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
  • 批准号:
    10270302
  • 财政年份:
    2021
  • 资助金额:
    $ 2.44万
  • 项目类别:
Gene duplication in the evolution of novel phenotypes and human disease
新表型和人类疾病进化中的基因复制
  • 批准号:
    8398686
  • 财政年份:
    2012
  • 资助金额:
    $ 2.44万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了