Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
基本信息
- 批准号:8729691
- 负责人:
- 金额:$ 6.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-28 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AreaAxonBiochemicalCellular biologyCollagenCollagen FibrilComplexComputer softwareControlled EnvironmentCuesDevelopmentEatingEngineeringEnvironmentExtracellular MatrixFilopodiaFocal AdhesionsGelGenerationsGoalsGrowthGrowth ConesImageImage AnalysisImmigrationImplantIn VitroInjuryInterventionKnowledgeLaboratoriesLamininMeasuresMechanicsMicroscopeMicrotubule PolymerizationMicrotubulesModelingMolecularMorphologyMyosin ATPaseNatural regenerationNerveNerve RegenerationNeuraxisNeuronsPatternPhysicsProcessRattusResearchResearch PersonnelRoleScienceSpeedSpinal InjuriesSpinal cord injuryStructureSystemTechniquesTestingTranslatingWidthaxon growthaxon guidanceaxonal guidanceaxonal pathfindingblebbistatincell motilitycell typedesigneffective therapyextracellularimplant materialin vitro Assayin vivoinjurednervous system developmentnovelphysical propertypreferencepublic health relevanceresponsespinal nerve posterior roottool
项目摘要
DESCRIPTION (provided by applicant): A detailed understanding of the processes that control axon growth and guidance is essential for understanding the development of the nervous system and for engineering successful regrowth of severed neurons following spinal cord injury. While many of the molecules responsible for enhancing or inhibiting growth and for attractive and repulsive guidance have been identified, the majority of our knowledge of the mechanisms of axon motility comes from studies on flat, featureless, stiff substrates. There is accumulating evidence, however, that cell motility is sensitive to the structural and mechanical environ- ment. Conversely, there has been significant progress in creating structural features that control axon growth in complex environments in vitro and in vivo, but in most cases the mechanisms responsible for the modulation of motility are not known. The goal of the proposed research is to investigate axonal guidance in rigorously controlled mechanical and structural environments using imaging and analysis tools that will reveal subcellular morphology and dynamics with unprecedented detail. These studies will elucidate the roles of filopodia, focal adhesions, mechanical forces and guidance factors in controlled environments, and provides crucial information for the development of manipulations of the extracellular environment in vivo that impact axon motility in predictable ways, and for the engineering of implant materials to promote nerve regeneration after injury. Our specific aims are to: (1) Determine the mechanisms by which filopodia-collagen fibril interactions promote axon motility and guidance in 3D (2) Assess the effects of matrix composition on growth cone morphology, axon outgrowth, and axon guidance in 3D collagen-I matri- ces, and (3) Test the hypothesis that axons confined to narrow lanes, which mimic fibrillar confinement, are less responsive to non-directed guidance cues. This research will utilize a specialized high-speed, high sensitivity spinning disk confocal microscope system developed in the laboratory of the PI, as well as customized image analysis software. The research is an interdisciplinary collaborative effort involving re- searchers with expertise in cell biology, physics, materials science, and engineering. This effort will produce an entirely new perspective on axon motility and should significantly advance our ability to understand and control axon growth in complex environments.
描述(由申请人提供):详细了解控制轴突生长和引导的过程对于理解神经系统的发育和脊髓损伤后切断神经元的工程成功再生至关重要。 虽然许多负责增强或抑制生长和吸引和排斥指导的分子已经被确定,但我们对轴突运动机制的大部分知识来自对平坦,无特征,坚硬基质的研究。 然而,越来越多的证据表明,细胞运动对结构和机械环境敏感。 相反,已经有显着的进展,创造控制轴突生长在复杂的环境中,在体外和体内的结构特征,但在大多数情况下,负责运动的调制机制是未知的。 拟议研究的目标是使用成像和分析工具在严格控制的机械和结构环境中研究轴突引导,这些工具将以前所未有的细节揭示亚细胞形态和动力学。 这些研究将阐明丝状伪足,局灶性粘连,机械力和指导因素在受控环境中的作用,并提供了重要的信息,在体内的细胞外环境的操作,影响轴突运动的可预测的方式,并为工程植入材料,以促进损伤后的神经再生的发展。 我们的具体目标是:(1)确定丝状伪足-胶原纤维相互作用促进3D中轴突运动和引导的机制(2)评估基质成分对3D胶原-I基质中生长锥形态、轴突生长和轴突引导的影响,以及(3)测试限制在狭窄通道(模拟纤维限制)的轴突对非定向引导线索的反应较低的假设。 本研究将利用PI实验室开发的专用高速,高灵敏度旋转圆盘共聚焦显微镜系统以及定制的图像分析软件。 这项研究是一项跨学科的合作努力,涉及细胞生物学,物理学,材料科学和工程学方面的专业知识。 这一努力将产生一个全新的视角轴突运动,并应显着提高我们的能力,了解和控制轴突生长在复杂的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey S. Urbach其他文献
Stress and flow inhomogeneity in shear-thickening suspensions
- DOI:
10.1016/j.jcis.2024.08.099 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Esmaeel Moghimi;Jeffrey S. Urbach;Daniel L. Blair - 通讯作者:
Daniel L. Blair
Jeffrey S. Urbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey S. Urbach', 18)}}的其他基金
Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
- 批准号:
8109871 - 财政年份:2009
- 资助金额:
$ 6.34万 - 项目类别:
Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
- 批准号:
8282873 - 财政年份:2009
- 资助金额:
$ 6.34万 - 项目类别:
Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
- 批准号:
7785781 - 财政年份:2009
- 资助金额:
$ 6.34万 - 项目类别:
Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
- 批准号:
8506555 - 财政年份:2009
- 资助金额:
$ 6.34万 - 项目类别:
Mechanisms of axonal pathfinding in three dimensional matrices
三维矩阵中轴突寻路的机制
- 批准号:
8485696 - 财政年份:2009
- 资助金额:
$ 6.34万 - 项目类别:
Axon motility and guidance in three dimensional matrices
三维矩阵中的轴突运动和引导
- 批准号:
7342786 - 财政年份:2007
- 资助金额:
$ 6.34万 - 项目类别:
Axon motility and guidance in three dimensional matrices
三维矩阵中的轴突运动和引导
- 批准号:
7211744 - 财政年份:2007
- 资助金额:
$ 6.34万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 6.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows