Biogenesis and Regulation of Human Telomerase
人类端粒酶的生物发生和调控
基本信息
- 批准号:8463827
- 负责人:
- 金额:$ 36.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinity ChromatographyAgeAmino Acid MotifsBiochemicalBiogenesisBiologicalBiological AssayCell CycleCellsChromosomesClinicalCollaborationsComplexDNADNA biosynthesisDNA-Directed DNA PolymeraseDataDefectDiseaseDyskeratosis CongenitaEmbryoEnvironmentEnzymesEpithelialEquilibriumEukaryotaEventFailureFundingGoalsGrowthHealthHematopoietic SystemHereditary DiseaseHomeostasisHumanIn VitroInheritedKnowledgeLengthLinkMalignant NeoplasmsMedicalMethodsMolecularNormal CellPancytopeniaPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalProcessProteinsPublishingRNARNA-Protein InteractionRecruitment ActivityRegulationRibonucleoproteinsSomatic CellSpecificitySyndromeTelomeraseTelomerase InhibitorTelomerase RNA ComponentTertiary Protein StructureTissuesWorkanti-cancer therapeuticcancer cellcell growth regulationchromosome replicationdesignhuman TERT proteinhuman diseasehuman tissuein vivoinsightpreventreconstitutiontelomerase reverse transcriptasetelomere
项目摘要
Telomerase elongates chromosome ends by addition of tandem telomeric repeats. This new DNA
synthesis is required to balance the loss of DNA that is inherent in the incomplete replication of
chromosome ends by conventional DNA polymerases. Single-celled eukaryotes constitutively activate
telomerase and maintain a homeostasis of telomere length. Surprisingly, human somatic cells do not:
they show progressive shortening of the telomeric repeat array with proliferation. Some human cells in
the embryo, germline, epithelial tissues, and hematopoietic system have detectable levels of
telomerase catalytic activity in cell lysates, but this level of activation is insufficient to prevent an
overall loss of telomere length in all human tissues with age. Cumulative loss eventually produces a
repeat array that is too short to protect the chromosome end, resulting in a forced exit from the cell
cycle. Cancer cells dramatically up-regulate telomerase to permit indefinite growth. For this reason,
telomerase inhibitors have great promise as broadly effective anti-cancer therapeutics. Telomerase
activators may have equally significant application for expanding the renewal capacity of normal
somatic cells with critically short telomeres arising from genetics, disease, age, or environment.
The telomerase RNA subunit (TER) is expressed as a precursor that must be processed, folded,
and assembled as a stable ribonucleoprotein (RNP) complex in order to accumulate to detectable
level in vivo. This RNP then recruits telomerase reverse transcriptase (TERT) to generate the active
enzyme. Collins lab efforts in previous funding periods have contributed pioneering insights about the
endogenous pathway of human TER precursor processing and RNP assembly and discovered
defects in the accumulation of mature telomerase RNP that underlie X-linked and autosomal dominant
forms of the bone marrow failure syndrome dyskeratosis congenita.
The Specific Aims of the next funding period address remaining gaps in knowledge about human
telomerase RNP accumulation and catalytic activation in vivo. Aim 1 exploits methods of transient and
stable TER expression in human cells to discover and characterize additional RNA motifs and proteins
required for TER maturation and biological stability. Aim 2 applies Collins lab expertise in RNA-protein
interaction assays and affinity purification to define the biochemical defects that underlie inherited
human diseases of telomerase deficiency. Aim 3 investigates the assembly and activity of telomerase
RNP with TERT. In vivo reconstitution methods will be combined with in vitro and in vivo activity
assays to define TER motif functions in the catalytic cycle. The physiological specificity of RNA and
protein domain interactions within the active RNP will be established. The long-term goal of these
studies is to understand telomerase RNP assembly, catalytic activation, and cellular regulation in
normal cells and disease and to exploit this understanding for improvement of human health.
端粒酶通过添加串联端粒重复序列延长染色体末端。这个新的DNA
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Collins其他文献
Kathleen Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Collins', 18)}}的其他基金
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10532612 - 财政年份:2022
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10471949 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10687195 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10912151 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10259688 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10683044 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10012227 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 36.17万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 36.17万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 36.17万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 36.17万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 36.17万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 36.17万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




