Computational and Functional Characterization of the Molecular Steps in Membran*
膜分子步骤的计算和功能表征*
基本信息
- 批准号:8829342
- 负责人:
- 金额:$ 0.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-16 至 2015-07-22
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseBindingBinding ProteinsBiochemicalBiochemistryBiological ModelsBiomedical EngineeringBiomedical ResearchBiophysicsCell membraneCerealsChimeric ProteinsComplexComputer SimulationCoupledDockingDoctor of MedicineDoctor of PhilosophyDrosophila genusEducational CurriculumEducational process of instructingElectrophysiology (science)Employment OpportunitiesEnrollmentEpilepsyEquilibriumFundingGoalsHispanic-serving InstitutionInstitutionInstructionIonsKineticsLeadLearningLinkMechanicsMediatingMembraneMembrane FusionMembrane LipidsMembrane ProteinsMemoryMemory impairmentMicroscopyModelingMolecularMolecular BiologyMolecular ModelsMutateMutationNeurobiologyNeuromuscular JunctionNeuronsNeurosciencesNeurosciences ResearchNeurotransmittersOpticsParkinson DiseasePhysiologyPlasticsPoint MutationProcessProteinsPuerto RicoReactionRegulationResearchResearch TrainingSNAP receptorSchizophreniaSeriesSiteStimulusStudentsSynapsesSynaptic CleftSynaptic MembranesSynaptic TransmissionSynaptic VesiclesTestingTrainingTransgenic AnimalsUnderrepresented MinorityUnited States National Institutes of HealthUniversitiesVesiclegenetic manipulationgraduate studentin vivomembrane modelmolecular modelingmultidisciplinarynervous system disorderneurotransmitter releaseprogramsprotein complexresearch studysynaptotagmintoolundergraduate student
项目摘要
DESCRIPTION (provided by applicant): Intellectual merit: At the cellular level, learning and memory are governed by changes in the efficacy of synaptic transmission and in particular, by the dynamic regulation of neuronal transmitter release. Neurotransmitters are packaged into synaptic vesicles that dock at the synaptic membrane, undergo a series of preparatory steps, open a pore, and fuse with the synaptic membrane, resulting in neurotransmitter release into the synaptic cleft. This process is very dynamic, plastic, and highly regulated. Although molecular components of docking and fusion have been identified, it is not yet understood how they interact to regulate the dynamics of docking, pore opening, and fusion. In particular, little is known about the detailed mechanics of protein interactions that regulate synaptic vesicle fusion. The present application will focus on this critical question by combining modeling and experimentation to investigate the molecular machinery that regulates synaptic vesicle docking and fusion. Vesicles tightly dock at the plasma membrane via a specialized protein complex (SNARE), which is thought to provide the necessary force to overcome inter-membrane repulsion and thus mediate vesicle fusion. Stimulus evoked fusion is triggered by an influx of Ca2+ ions that interact with a vesicle protein, synaptotagmin (Syt), which is tightly coupled with the SNARE complex. Fusion pore opening is thought to be controlled by the interaction of Syt and a small protein complexin (Cpx) with the SNARE complex. Although molecular interactions of these proteins have been studied with biochemical and molecular biology tools, there is still a lack of understanding of how these proteins interact dynamically and how the forces of the protein fusion machinery counterbalance forces generated within the synaptic and vesicle membranes. To elucidate these mechanisms, we propose to build a molecular model of the fusion machinery and to perform computer simulations of the dynamics of the fusion complex. To understand the interactions between the vesicle, synaptic membrane and the protein fusion machinery, we will develop a coarse grain model of membrane/vesicle dynamics and integrate it with the atomic model of the fusion protein complex. To validate the model, we will simulate the effect of single point mutations in the fusion complex on the release kinetics and test our predictions experimentally. The experiments will be performed at Drosophila neuromuscular junctions (NMJ), a model system ideally amendable to genetic manipulations. To test the predictions of the model, we will combine electrophysiology and optical fluorescent microscopy to assess release kinetics in NMJs where the fusion machinery is modified by point mutations with computationally predicted effects on membrane fusion. This research will be performed by a multidisciplinary team that includes experts in molecular modeling (Dr. Jagota), membrane mechanics and dynamics (Dr. Hui), synaptic physiology (Dr. Bykhovskaia) and Drosophila neurobiology (Dr. Littleton). An attack on this problem by a collaborative team with balanced representation of all its aspects will lead to new, detailed and quantitative, understanding of the
regulated synaptic vesicle fusion process. Broader impact: Universidad Central del Caribe (UCC) is a Hispanic serving institution in Puerto Rico (U.S. Commonwealth). The proposed project will allow the UCC to develop tight links with highly regarded mainland institutions and will thus create training and employment opportunities for students with diverse backgrounds. The PI, Dr. Bykhovskaia, directs the Specialized Neuroscience Research Program (SNRP) at UCC (funded by NIH), that has a goal of raising research standards in institutions with a predominant enrollment of underrepresented minorities. Thus, the proposed project will involve underrepresented B.S., M.S., Ph.D., and M.D. students in biomedical research. Furthermore, Dr. Jagota directs the undergraduate and graduate Bioengineering programs at Lehigh University, an institution with a balanced emphasis on research, teaching and training. The proposed research will be performed by graduate students, and will actively involve undergraduate students through research for credit and summer opportunities. This research will be incorporated into the undergraduate bioengineering curriculum through a course on Biomolecular and Cellular Mechanics, developed by Dr. Jagota at Lehigh University. It will be tightly integrated with other activities, including student exchange and transdisciplinary seminars, and thus will promote integration of research and training across diverse intellectual and ethnic backgrounds.
说明(由申请人提供):智力价值:在细胞水平上,学习和记忆受突触传递功效变化的支配,特别是受神经递质释放的动态调节的支配。神经递质被包装到突触囊泡中,突触囊泡停靠在突触膜上,经历一系列准备步骤,打开孔,并与突触膜融合,导致神经递质释放到突触间隙中。这个过程非常动态、灵活且受到高度监管。虽然已经确定了对接和融合的分子组分,但尚不清楚它们如何相互作用以调节对接、孔开放和融合的动力学。特别是,很少有人知道的蛋白质相互作用的详细机制,调节突触囊泡融合。本申请将通过结合建模和实验来研究调节突触囊泡对接和融合的分子机制来关注这个关键问题。囊泡通过专门的蛋白质复合物(SNARE)紧密停靠在质膜上,该蛋白质复合物被认为提供克服膜间排斥的必要力,从而介导囊泡融合。刺激诱发的融合是由Ca 2+离子的流入触发的,所述Ca 2+离子与囊泡蛋白突触结合蛋白(Syt)相互作用,所述突触结合蛋白与SNARE复合物紧密偶联。融合孔开放被认为是由Syt和小蛋白复合蛋白(Cpx)与SNARE复合物的相互作用控制的。虽然这些蛋白质的分子相互作用已经用生物化学和分子生物学工具进行了研究,但仍然缺乏对这些蛋白质如何动态相互作用以及蛋白质融合机制的力如何平衡突触和囊泡膜内产生的力的理解。为了阐明这些机制,我们建议建立一个分子模型的融合机制,并进行计算机模拟的融合复杂的动力学。为了了解囊泡,突触膜和蛋白质融合机制之间的相互作用,我们将开发一个粗粒模型的膜/囊泡动力学,并将其与融合蛋白复合物的原子模型。为了验证该模型,我们将模拟融合复合物中的单点突变对释放动力学的影响,并通过实验测试我们的预测。这些实验将在果蝇神经肌肉接头(NMJ)上进行,这是一个理想的可用于遗传操作的模型系统。为了测试模型的预测,我们将结合联合收割机电生理学和光学荧光显微镜来评估NMJ的释放动力学,其中融合机器通过点突变进行修改,计算预测对膜融合的影响。这项研究将由一个多学科团队进行,包括分子建模(Jagota博士),膜力学和动力学(Hui博士),突触生理学(Bykhovskaia博士)和果蝇神经生物学(利特尔顿博士)的专家。由一个合作团队对这个问题的攻击,平衡地代表了它的所有方面,将导致对这个问题的新的,详细的和定量的理解。
调节突触囊泡融合过程。更广泛的影响:Universidad Central del Caribe(UCC)是波多黎各(美国联邦)的西班牙裔服务机构。建议的项目将使大学城与内地知名院校建立紧密联系,从而为不同背景的学生创造培训和就业机会。PI,Bykhovskaia博士,在UCC(由NIH资助)指导专业神经科学研究计划(SNRP),其目标是提高少数民族占主导地位的机构的研究标准。因此,拟议的项目将涉及代表性不足的BS,医学硕士,哲学博士、和医学博士。生物医学研究的学生。此外,Jagota博士还指导利哈伊大学的本科生和研究生生物工程课程,这是一个平衡强调研究,教学和培训的机构。拟议的研究将由研究生进行,并将积极参与本科生通过研究信贷和夏季的机会。这项研究将通过利哈伊大学Jagota博士开发的生物分子和细胞力学课程纳入本科生物工程课程。它将与其他活动紧密结合,包括学生交流和跨学科研讨会,从而将促进不同知识和种族背景的研究和培训的融合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIA BYKHOVSKAIA其他文献
MARIA BYKHOVSKAIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIA BYKHOVSKAIA', 18)}}的其他基金
COMPUTATIONAL AND FUNCIONAL CHARACTERIZATION OF THE MOLECULAR STEPS IN MEMBRANE FUSION
膜融合分子步骤的计算和功能表征
- 批准号:
9064856 - 财政年份:2015
- 资助金额:
$ 0.59万 - 项目类别:
Neuroscience Research, Training and Professional Development in Puerto Rico
波多黎各的神经科学研究、培训和专业发展
- 批准号:
8573940 - 财政年份:2013
- 资助金额:
$ 0.59万 - 项目类别:
Computational and Functional Characterization of the Molecular Steps in Membran*
膜分子步骤的计算和功能表征*
- 批准号:
8442509 - 财政年份:2012
- 资助金额:
$ 0.59万 - 项目类别:
Computational and Functional Characterization of the Molecular Steps in Membran*
膜分子步骤的计算和功能表征*
- 批准号:
8511841 - 财政年份:2012
- 资助金额:
$ 0.59万 - 项目类别:
Computational and Functional Characterization of the Molecular Steps in Membran*
膜分子步骤的计算和功能表征*
- 批准号:
8644949 - 财政年份:2012
- 资助金额:
$ 0.59万 - 项目类别:
Computational and Functional Characterization of the Molecular Steps in Membran*
膜分子步骤的计算和功能表征*
- 批准号:
8710775 - 财政年份:2012
- 资助金额:
$ 0.59万 - 项目类别: