Cellular Mechanisms for Increased Gluconeogenesis in Type 2 Diabetes
2 型糖尿病糖异生增加的细胞机制
基本信息
- 批准号:8245437
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:1,2-diacylglycerolAbdomenAccountingAcyl Coenzyme AAdipose tissueAffectAntisense OligonucleotidesBindingBlindnessBlood GlucoseCREB1 geneDataDevelopmentDietDiglyceridesEnzymesFastingFatty LiverFatty acid glycerol estersFreezingFructoseGene Expression ProfilingGenetic TranscriptionGluconeogenesisGlucoseGlucose Plasma ConcentrationGlutamineGlycerolGlycosylated hemoglobin AGrantHepaticHumanHyperglycemiaInsulinInsulin ResistanceKidney FailureLimb structureLipidsLipodystrophyLiverLiver GlycogenLiver diseasesMeasuresMessenger RNAMethodsModelingMolecularNon-Insulin-Dependent Diabetes MellitusObesityOperative Surgical ProceduresPathogenesisPathway interactionsPatientsPhosphoenolpyruvate CarboxylaseProteinsPyruvate CarboxylaseRattusRegulationResearch PersonnelRodent ModelRoleSamplingTechniquesTestingTissuesTracerTransgenic OrganismsTranslatingVariantVeteransbasal insulinblood glucose regulationdiabetic ratenzyme activityfasting plasma glucosefeedingglobal healthglucose metabolismglucose monitorglucose productionglucose-6-phosphatasehepatic gluconeogenesishuman datahuman subjectimprovedin vivoinsulin sensitivityislet amyloid polypeptidelipid biosynthesislipid metabolismliver biopsymRNA Expressionnew therapeutic targetnon-alcoholic fatty livernon-diabeticnoveloverexpressionpreventpromoterprotein expressionsensortherapeutic targettranscription factor
项目摘要
DESCRIPTION (provided by applicant):
In patients with T2D, increased hepatic gluconeogenesis is the main cause of fasting hyperglycemia. Many ascribed increased gluconeogenesis to increased transcription of phosphoenolpyruvate carboxykinase (PEPCK). However, our recent findings challenge this dogma. We have shown that hyperglycemia and increased glucose production develop without increased expression of PEPCK or glucose 6-phosphatase in two rodent models with fasting hyperglycemia. We translated these results to humans, showing that in patients with poorly controlled T2D, fasting hyperglycemia developed without increased hepatic expression of PEPCK or G6Pc. Thus, another mechanism must account for increased gluconeogenesis in T2D. Our Preliminary Data now suggests that increased expression of pyruvate carboxylase may be this mechanism. We found that increases in PC protein occur in a rat model of T2D. Moreover, new human data shows that hepatic expression of PC mRNA variant-2 (PCV2) and PC protein, but not PEPCK or G6P, is tightly associated with HbA1c in non-diabetic subjects(R=0.80, P<0.001). The studies proposed in the Specific Aims of this grant will provide important new information on the role of PC in the pathogenesis of T2D. In addition, we will assess pyruvate carboxylase as a potential novel therapeutic target using a specific antisense oligonucleotide (PC ASO) to knockdown expression in liver and fat. In Aim 1, we will determine whether pyruvate carboxylase expression and activity is increased in patients with T2D. We hypothesize that fasting hyperglycemia in patients with T2D will be associated with increases in PCV2 mRNA, PC protein and PC activity. We will obtain liver samples from normoglycemic and patients with T2D undergoing elective abdominal surgery. This will safely provide a sufficient quantity of liver tissue to assess PC expression and activity, in addition to the expression/activity of other gluconeogenic enzymes and potential allosteric modifiers. We will relate the expression and activity of these enzymes to the fasting blood glucose concentration, and also pre-prandial glucose, mean blood glucose concentrations (using continuous glucose monitoring) and HbA1c. In Aim 2, we will determine how knockdown of pyruvate carboxylase affects basal and insulin stimulated hepatic glucose metabolism. Specifically, we will assess the compensatory pathways that may be activated using a sophisticated "triple-tracer" isotopic approach, direct quantification of key metabolite fluxes (e.g. glycerol and glutamine) and unbiased gene expression profiling. The efficacy of PC ASO in lowering endogenous glucose production and improving insulin sensitivity will be tested in two models of T2D, the ZDF rat and a transgenic rat overexpressing human islet amyloid polypeptide (HIP rat). In Aim 3, we will assess the effects of knockdown of hepatic and adipose pyruvate carboxylase on lipid metabolism. We show that knockdown of PEPCK in high-fat fed rats protects against adiposity but leads to nonalcoholic fatty liver disease and hepatic insulin resistance, akin to a mild lipodystrophy. In contrast, PC ASO also protects against adiposity but decreased liver fat and improved hepatic insulin sensitivity. We hypothesize that decreasing PC expression, but not PEPCK expression, will decrease hepatic glyceroneogenesis and, thus hepatic lipid storage. We will quantify hepatic and adipose glyceroneogenesis using sophisticated isotopic methods in fat-fed rats treated with PC ASO in comparison to PEPCK ASO and measuring differences in lipid metabolites (e.g. acyl-CoA's, diacylglycerol) by LC-MS/MS. We will also quantify changes in de novo lipogenesis in fructose-fed rats treated with either PEPCK ASO or PC ASO and assess the changes in NAFLD and hepatic insulin resistance. These studies will the first to quantify the effects of decreasing PC expression in vivo. In summary, the studies contained within this proposal could transform our understanding of the molecular regulation of hepatic gluconeogenesis in patients with T2D and validate pyruvate carboxylase as novel therapeutic target for both T2D and NAFLD.
PUBLIC HEALTH RELEVANCE:
Type 2 Diabetes (T2D), is a growing global health concern. Type 2 diabetes (T2D) affects 1 in 6 veterans and is the leading cause of blindness, renal failure and non-traumatic loss of limb. The development of T2DM depends, in part, on increased glucose synthesis (gluconeogenesis). However, the cause for this is unknown. Guided by exciting preliminary data, the investigators now hypothesize that increased expression of the enzyme pyruvate carboxylase (PC) accounts for the development of fasting hyperglycemia. In this application, they will translate their results to humans and determine whether PC expression is increased in patients with T2D. In addition, the investigators will use antisense therapy to specifically target and normalize PC in determine whether targeting PC will lower glucose control and also treat fatty liver. These studies will provide important new information regarding the control of gluconeogenesis and identify potential novel therapeutic targets.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VARMAN T SAMUEL其他文献
VARMAN T SAMUEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VARMAN T SAMUEL', 18)}}的其他基金
Exploring mitochondrialflux and lipid compartmentation in vivo to develop new therapies for alcoholic liver disease
探索体内线粒体流和脂质区室以开发酒精性肝病的新疗法
- 批准号:
10620346 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Exploring mitochondrialflux and lipid compartmentation in vivo to develop new therapies for alcoholic liver disease
探索体内线粒体流和脂质区室以开发酒精性肝病的新疗法
- 批准号:
10451071 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cellular Mechanisms for Increased Gluconeogenesis in Type 2 Diabetes
2 型糖尿病糖异生增加的细胞机制
- 批准号:
8762400 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Cellular Mechanisms for Increased Gluconeogenesis in Type 2 Diabetes
2 型糖尿病糖异生增加的细胞机制
- 批准号:
8413409 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Cellular mechanisms for increased gluconeogenesis in type 2 diabetes mellitus: the role of lipid induced pyruvate carboxylase acetylation in increasing hepatic gluconeogenic capacity.
2型糖尿病中糖异生增加的细胞机制:脂质诱导的丙酮酸羧化酶乙酰化在增加肝糖异生能力中的作用。
- 批准号:
9240860 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




