Modular Ultrasonic Beacon System (MUBS) for Ultrasound-guided Interventional Surg
用于超声引导介入手术的模块化超声信标系统 (MUBS)
基本信息
- 批准号:8589815
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsBackBiopsyBreastCaringCost SavingsCustomDataDetectionDevicesDistalDropsElectronicsEquilibriumFailureFosteringFutureGenerationsGoalsHealthcare SystemsHousingImageImage EnhancementImageryInterventionLearningLegal patentLocationManufacturer NameMedicalMedical DeviceMethodsModalityMonitorNeedle biopsy procedureNeedlesNerve BlockOperative Surgical ProceduresPhasePhysiologic pulsePlayPower SourcesPrintingProblem SolvingProceduresProviderResearchResearch PersonnelRiskSafetySamplingSchemeSignal TransductionSolutionsSystemTissuesTrainingTransducersUltrasonic TherapyUltrasonic TransducerUltrasonicsUltrasonographyUnnecessary SurgeryWomananalogbasebreast cancer diagnosiscommercializationcomputerized data processingcostcost effectivenessdesignhazardimaging probeinnovationinnovative technologiesmanufacturing processminiaturizeminimally invasivenovelpatient safetyprototypepublic health relevancesoft tissuestandard of caretool
项目摘要
DESCRIPTION (provided by applicant): Each year 1.6 million US women undergo biopsy for breast cancer diagnosis. Fortunately fewer and fewer women suffer through open surgical biopsy but rather receive minimally invasive image-guided needle based biopsy. Ultrasound imaging guidance is the dominant modality for this intervention as it offers the greatest balance of safety, patient comfort, expediency, and cost effectiveness. However, for all its safety and convenience, ultrasound imaging quality remains strongly operator dependent. This problem is exacerbated by the fact that ultrasound is optimal for imaging soft tissue and not metallic tools such as needles. What this presents is a new barrier for adoption amongst many would-be practitioners: ultrasound guided needle-based interventions are difficult and require substantial training. ClariTrac Inc. is a startup medical device company that aims to solve this problem. Specifically, ClariTrac is developing a patent pending Modular Ultrasonic Beacon System (MUBS) that consists mainly of a disposable, miniature hardware component to be incorporated with the tip or shaft of needles or other interventional tools. The MUBS is a fully integrated ultrasound transducer with electronics and interconnection. The operating principle of the MUBS is like a beacon: it waits in stand-by to detect ultrasound energy emitted from the ultrasound imaging probe. Upon detecting the probe's energy, the MUBS in turn actively transmits energy back to the probe, in a marco-polo fashion. This returned energy appears as a bright, customizable marker on the ultrasound image that represents the precise location of the interventional tool. We hypothesize this marker will allow the care- provider to perform the procedure with greater ease and precision. Our ultimate goal is to design hardware that serves as a low-cost platform for future innovation in ultrasound enabled interventional tools. These applications extend to nerve block and line-placement, beyond image enhancement to imaging, tissue characterization, monitoring and therapy.
描述(由申请人提供):每年有160万美国妇女接受乳腺癌诊断活检。幸运的是,越来越少的妇女遭受开放手术活检,而是接受微创图像引导穿刺活检。超声成像引导是这种介入的主要方式,因为它提供了安全性、患者舒适度、便利性和成本效益的最大平衡。然而,尽管其安全性和便利性,超声成像质量仍然强烈依赖于操作员。超声最适合对软组织进行成像,而不是对诸如针之类的金属工具进行成像,这一事实加剧了该问题。这对许多潜在的从业者来说是一个新的障碍:超声引导的针基干预是困难的,需要大量的培训。ClariTrac Inc.是一家旨在解决这一问题的初创医疗器械公司。具体而言,ClariTrac正在开发一种正在申请专利的模块化超声信标系统(MUBS),该系统主要由一次性微型硬件组件组成,可与针头或其他介入工具的尖端或轴杆结合。MUBS是一种完全集成的超声换能器,具有电子和互连功能。MUBS的工作原理就像一个信标:它在待机状态下等待检测从超声成像探头发出的超声能量。一旦检测到探头的能量,MUBS又以马可波罗方式主动将能量传输回探头。这种返回的能量在超声图像上显示为明亮的可定制标记,表示介入工具的精确位置。我们假设这个标记将允许护理提供者更容易和精确地执行程序。我们的最终目标是设计硬件,作为未来超声介入工具创新的低成本平台。这些应用扩展到神经阻滞和线放置,超越图像增强到成像、组织表征、监测和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Cummins其他文献
Thomas Cummins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




