Analysis of force developed by a AAA ATPase
AAA ATP酶产生的力分析
基本信息
- 批准号:8536863
- 负责人:
- 金额:$ 29.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAddressAffectAmino AcidsApoptosisBacteriaBindingBiogenesisBiological ClocksBiologyCell CycleCell divisionCell physiologyClinical TreatmentClinical TrialsCommitDecision TreesDevicesDigestionFailureFamilyGene Expression RegulationGenerationsGenetic TranscriptionGoalsHalf-LifeHandHealthHumanIndividualLengthMalignant NeoplasmsMeasurementMeasuresMethodsMitochondriaModelingMolecular MachinesMovementMultiple MyelomaMultivesicular BodyMutateNervous System TraumaOutcomePathologyPerformancePropertyProteasome InhibitorProteinsProteolysisRecurrenceRegulationRoleSideSignal Transduction PathwaySiteStatistical DistributionsStressSurfaceSystemTechniquesTestingTherapeutic InterventionTimeTransport Protein GeneWarWorkantigen processingdesensitizationhuman diseaseinsightmembermulticatalytic endopeptidase complexpolypeptideprotein degradationreceptorsingle molecule
项目摘要
DESCRIPTION (provided by applicant): The AAA ATPases family includes molecules whose roles include, but are far from limited to, biogenesis of mitochondria and multivesicular bodies, proteins in involved in gene regulation and protein transport. This project will focus on studying the activity of these machines at the single molecule level. The model protein will be ClpX - it is the part of the proteosome, a key effect of protein degradation that unfolds the proteins to prepare them for degradation. . Cellular proteins differ widely in their liability, from half-lives of minutes to days. Regulated degradation, by allowing rapid changes in the levels of cellular proteins, helps control signal transduction pathways, the cell- cycle, transcription, apoptosis, antigen processing, biological clock control, differentiation and surface receptor desensitization. The questions to be addressed are: How is work partitioned between alternative outcomes? What is the maximum work that can be performed by the system? What factors limit its efficiency in performing work? These questions have health implications: human pathological conditions are associated with failures of the degradation system and its regulation offers the potential for therapeutic intervention. Furthermore, an inhibitor of proteasome catalytic activity is in use for treatment of recurrent multiple myeloma, and proteasome inhibitors are in clinical trial for treatment of a broad spectrum of human malignancies. Thus, understanding the regulation of the half-life of proteins should provide critical insights into cell physiology and pathology. The mishandling of aberrant proteins incurs penalties throughout biology: the survival of bacteria subjected to stress depends on the effective performance of systems which deal with misfolded and structurally aberrant proteins- to either fold them properly or destroy them. The specific questions to be addressed are: How hard can the device pull to cause unfolding? How many pulls are needed to commit irreversibly? What is the limit of pulling power, and the statistical distribution of pulling power? Answers to these questions will begin to reveal not just what these machines do but the decision tree that describes how outcomes are controlled and when machine capacity may be exceeded. We want to know not just how the machine works, but how its decision tree yields alternative outcomes.
描述(由申请人提供):AAA ATP酶家族包括其作用包括但远不限于线粒体和多泡体的生物发生、参与基因调节的蛋白质和蛋白质转运的分子。该项目将重点研究这些机器在单分子水平上的活动。模型蛋白将是ClpX -它是蛋白体的一部分,是蛋白质降解的关键作用,它使蛋白质展开以准备降解。.细胞蛋白质在它们的责任上有很大的不同,从几分钟到几天的半衰期。通过允许细胞蛋白质水平的快速变化,调节的降解有助于控制信号转导途径、细胞周期、转录、凋亡、抗原加工、生物钟控制、分化和表面受体脱敏。要解决的问题是:如何在不同的结果之间分配工作?系统可以执行的最大工作量是多少?哪些因素限制了其执行工作的效率?这些问题对健康有影响:人类的病理状况与降解系统的失败有关,其调节提供了治疗干预的可能性。此外,蛋白酶体催化活性的抑制剂用于治疗复发性多发性骨髓瘤,并且蛋白酶体抑制剂用于治疗广谱人类恶性肿瘤的临床试验。因此,了解蛋白质半衰期的调节应该为细胞生理学和病理学提供重要的见解。对异常蛋白质的错误处理会在整个生物学中招致惩罚:细菌在压力下的生存取决于处理错误折叠和结构异常蛋白质的系统的有效性能-正确折叠或破坏它们。需要解决的具体问题是:器械拉动的力度有多大才能导致展开?需要多少次拉才能做出不可逆的承诺?牵引力的极限是什么?牵引力的统计分布是什么?这些问题的答案将开始不仅揭示这些机器做什么,而且揭示描述结果如何控制以及何时可能超过机器能力的决策树。我们不仅想知道机器是如何工作的,还想知道它的决策树如何产生替代结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANFORD M SIMON其他文献
SANFORD M SIMON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANFORD M SIMON', 18)}}的其他基金
Center for therapeutic targeting of the Fusion Oncoprotein of Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌融合癌蛋白治疗靶向中心
- 批准号:
10826323 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
ASO and shRNA for targeting the oncogenic transcript driving fibrolamellar hepatocellular carcinoma
ASO 和 shRNA 用于靶向驱动纤维层状肝细胞癌的致癌转录物
- 批准号:
10652432 - 财政年份:2020
- 资助金额:
$ 29.73万 - 项目类别:
ASO and shRNA for targeting the oncogenic transcript driving fibrolamellar hepatocellular carcinoma
ASO 和 shRNA 用于靶向驱动纤维层状肝细胞癌的致癌转录物
- 批准号:
10171814 - 财政年份:2020
- 资助金额:
$ 29.73万 - 项目类别:
ASO and shRNA for targeting the oncogenic transcript driving fibrolamellar hepatocellular carcinoma
ASO 和 shRNA 用于靶向驱动纤维层状肝细胞癌的致癌转录物
- 批准号:
10412971 - 财政年份:2020
- 资助金额:
$ 29.73万 - 项目类别:
Center for therapeutic targeting of the Fusion Oncoprotein of Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌融合癌蛋白治疗靶向中心
- 批准号:
10221308 - 财政年份:2019
- 资助金额:
$ 29.73万 - 项目类别:
Cellular Pathogenesis of Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的细胞发病机制
- 批准号:
9158744 - 财政年份:2016
- 资助金额:
$ 29.73万 - 项目类别: