Characterization of Gradient-Responsive Genetic Programs Using Light Sensors
使用光传感器表征梯度响应遗传程序
基本信息
- 批准号:8403398
- 负责人:
- 金额:$ 29.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBindingBinding SitesBiological AssayBiological ModelsBiological PhenomenaCell CommunicationCellsComplexComputer SimulationComputing MethodologiesDNA SequenceDefectDevelopmentDiffuseDiseaseEmbryoEscherichia coliFeedbackFree EnergyGene Expression ProfileGeneticGenetic ProgrammingGrowthKineticsLeadLibrariesLightLocationLogicMalignant NeoplasmsMeasuresMessenger RNAMethodsMethyl GreenModelingMutationNeoplasm MetastasisNeuronsPatternPerceptionPrintingProcessPropertyRegulationRibosomesShapesSignal PathwaySignal TransductionSystemTestingThermodynamicsVariantcomputerized data processingdesignflexibilityhuman diseaseimprovedinterestlight intensitymathematical modelmorphogensprogramspublic health relevancesensorsimulationtheoriestool
项目摘要
DESCRIPTION (provided by applicant): Spatial gradients enable cells to precisely organize into complex multicellular patterns. Morphogens are released by clusters of cells and diffuse outward to form a gradient. Surrounding cells convert this gradient into patterns of gene expression using regulatory genetic programs composed of integrated genetic logic, feedback, and cell-cell communication. The central objective of this proposal is to identify the design principles by which genetic programs convert gradients into patterns of gene expression. Our approach will harness two new tools. The first is a set of red and green light sensors that activate a signaling pathway in a graded manner as a function of light intensity. These will be used to deliver light gradients that will be processed as inputs by a genetic program. The second is a suite of computational methods that enable us to convert a desired genetic program into a DNA sequence. This model-guided design allows us to enumerate and evaluate many genetic programs in silico and then construct and experimentally test a library of the most interesting programs. Further, a biophysical method that predicatively tunes expression levels by changing the ribosome binding site sequence will be harnessed to quantitatively compare the mutational robustness and evolvability of programs. The Aims are organized around the testing of hypotheses as to how regulatory networks process single and multiple gradient signals. Specifically, we will test the following theories: (i) Embedded feedforward loops improve robustness to mutations that affect expression levels (Aim 1). (ii) Feedback loops and spatial bistability increase pattern sharpness and robustness (Aim 1). (iii) Programs that integrate opposing gradients have improved robustness and pattern evolvability (Aim 2). (iv) Opposing gradients can be used as part of size-independent center-finding algorithms (Aim 2). The use of synthetic genetic circuits and E. coli as a model system will make it possible to characterize the gradient-processing properties of many genetic programs and make quantitative comparisons to a fully parameterized mathematical model. This approach will elucidate principles of how regulatory networks are organized to process gradients that can then be generalized to other systems.
描述(申请人提供):空间梯度使细胞能够精确地组织成复杂的多细胞模式。形态原由成团的细胞释放,并向外扩散形成梯度。周围的细胞利用由整合的遗传逻辑、反馈和细胞间交流组成的调控遗传程序,将这种梯度转化为基因表达的模式。这项提案的中心目标是确定遗传程序将梯度转换为基因表达模式的设计原则。我们的方法将利用两个新工具。第一个是一组红光和绿光传感器,它们以分级的方式激活信号通路,作为光强度的函数。这些将被用来传递光梯度,这些光梯度将作为遗传程序的输入进行处理。第二种是一套计算方法,使我们能够将所需的遗传程序转换为DNA序列。这种以模型为导向的设计使我们能够列举和评估Silico中的许多遗传程序,然后构建和实验测试最有趣的程序库。此外,将利用一种通过改变核糖体结合位点序列来预测调节表达水平的生物物理方法来定量比较程序的突变稳健性和进化性。这些目标围绕有关监管网络如何处理单一和多个梯度信号的假设进行测试。具体地说,我们将测试以下理论:(I)嵌入的前馈循环提高了对影响表达水平的突变的稳健性(目标1)。(2)反馈回路和空间双稳态提高了模式的清晰度和稳健性(目标1)。(3)整合相反梯度的程序具有更好的稳健性和模式可演化性(目标2)。(4)相反的梯度可用作与大小无关的中心寻找算法的一部分(目标2)。使用合成遗传电路和大肠杆菌作为模型系统,将有可能表征许多遗传程序的梯度处理特性,并与完全参数化的数学模型进行定量比较。这种方法将阐明如何组织监管网络以处理梯度的原则,然后这些梯度可以推广到其他系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER A VOIGT其他文献
CHRISTOPHER A VOIGT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER A VOIGT', 18)}}的其他基金
A Toolkit for Light-Control of Molecular Processes in Living Cells
活细胞中分子过程的光控制工具包
- 批准号:
8237893 - 财政年份:2012
- 资助金额:
$ 29.02万 - 项目类别:
System Dynamics of the Salmonella Virulence Regulatory Network
沙门氏菌毒力监管网络的系统动力学
- 批准号:
8524180 - 财政年份:2012
- 资助金额:
$ 29.02万 - 项目类别:
A Toolkit for Light-Control of Molecular Processes in Living Cells
活细胞中分子过程的光控制工具包
- 批准号:
8431348 - 财政年份:2012
- 资助金额:
$ 29.02万 - 项目类别:
A Toolkit for Light-Control of Molecular Processes in Living Cells
活细胞中分子过程的光控制工具包
- 批准号:
8616764 - 财政年份:2012
- 资助金额:
$ 29.02万 - 项目类别:
A Toolkit for Light-Control of Molecular Processes in Living Cells
活细胞中分子过程的光控制工具包
- 批准号:
8811136 - 财政年份:2012
- 资助金额:
$ 29.02万 - 项目类别:
Characterization of Gradient-Responsive Genetic Programs Using Light Sensors
使用光传感器表征梯度响应遗传程序
- 批准号:
8022971 - 财政年份:2011
- 资助金额:
$ 29.02万 - 项目类别:
Characterization of Gradient-Responsive Genetic Programs Using Light Sensors
使用光传感器表征梯度响应遗传程序
- 批准号:
8386775 - 财政年份:2011
- 资助金额:
$ 29.02万 - 项目类别:
Characterization of Gradient-Responsive Genetic Programs Using Light Sensors
使用光传感器表征梯度响应遗传程序
- 批准号:
8599474 - 财政年份:2011
- 资助金额:
$ 29.02万 - 项目类别:
Characterization of Gradient-Responsive Genetic Programs Using Light Sensors
使用光传感器表征梯度响应遗传程序
- 批准号:
8207214 - 财政年份:2011
- 资助金额:
$ 29.02万 - 项目类别:
System Dynamics of the Salmonella Virulence Regulatory Network
沙门氏菌毒力监管网络的系统动力学
- 批准号:
7751329 - 财政年份:2007
- 资助金额:
$ 29.02万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.02万 - 项目类别:
Continuing Grant