A Novel Approach to Decoding Vertebrate Gene Regulation
解码脊椎动物基因调控的新方法
基本信息
- 批准号:8516079
- 负责人:
- 金额:$ 5.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAttentionBase PairingBinding SitesBioinformaticsBiologicalBiological AssayBiological ProcessBiologyChIP-seqCodeCollectionComplementComplexComputational TechniqueDNA SequenceDataDevelopmentDevelopmental BiologyDevelopmental GeneDiseaseEnhancersFutureGene ExpressionGene Expression RegulationGene Transfer TechniquesGenesGenetic EngineeringGenomeGenomicsGoalsHumanHuman GenomeIndividualKnowledgeLaboratoriesLanguageLeadLearningLengthMeasuresMethodologyModelingNucleic Acid Regulatory SequencesNucleotidesOpen Reading FramesOrganOrganogenesisPatternPhenotypeProteinsRegulator GenesRegulatory ElementRegulatory PathwayReporterReporter GenesResourcesSea UrchinsStagingTestingTimeTissuesTranslatingVariantVertebratesWorkZebrafishbasecandidate validationcell typeclinical applicationcombinatorialdesigndesign and constructiongene therapygenome annotationgenome-wide analysisimprovedin vivonovelnovel strategiesregenerative therapyresearch studyresponsestem cellssynthetic biologytherapeutic developmenttranscription factor
项目摘要
DESCRIPTION (provided by applicant): While the 2% of our genome that encodes proteins has been successfully annotated and characterized, deciphering the regulatory code embedded in the remaining 98% remains a challenge. Improving our understanding of the regulatory code is essential for determining the cell-type-specific regulatory circuits that govern organogenesis and contribute to disease. Developmental regulatory networks in the sea urchin have been comprehensively described. In vertebrates, however, most studies of regulatory variation have taken a top-down approach, computationally predicting regulatory elements or experimentally characterizing binding sites of individual transcription factors. Although many known regulatory regions are large and complex, preliminary in vivo functional studies indicate that DNA sequences as short as six base pairs (bp) drive precise expression of a reporter gene to specific tissues, and that a two-nucleotide substitution leads to a change in the domain of the expression. The proposed project will pioneer a novel bottom-up approach to decipher the vertebrate regulatory code by characterizing the regulatory potential of all 6-base pair (bp) sequences. These short motifs will be tested for enhancer activity using zebra fish transgenesis during development. The first specific aim of the project is to computationally design a collection of reporter constructs that covers all 6-mers compactly and enables efficient functional characterization of 6-mer enhancers. This is a challenging computational problem, and the algorithms designed and implemented at this stage will be a powerful resource for the efficient design of oligomers for future enhancer experiments and many other biological assays. The second aim is to compute and analyze the genomic distributions of experimentally validated enhancers and use the results to interpret expression data. Finally, the third aim is to develop and test models for the interaction of multiple regulatory 6-mers. Particular attention will be devoted to additive effects of combinations of enhancers and the identification of potential silencers. By building and functionally translating a regulatory language from scratch, this project complements top-down efforts to understand the regulatory code. This project will have an enormous impact on numerous biological fields, from developmental and evolutionary biology to genome annotation. Various clinical applications will also benefit from this project, such as reprogramming strategies for stem-cell-based regenerative therapies. In addition, it will pave the way for gene therapy by genetically engineering regulatory elements that drive compounds to specific tissues at different time points.
描述(由申请人提供):虽然我们基因组中编码蛋白质的2%已经被成功地注释和表征,但破译嵌入其余98%的调控代码仍然是一个挑战。提高我们对调控代码的理解对于确定控制器官发生和促进疾病的细胞类型特异性调控回路至关重要。海胆发育调控网络已被全面描述。然而,在脊椎动物中,大多数调控变异的研究都采取了自上而下的方法,通过计算预测调控元件或通过实验表征单个转录因子的结合位点。尽管许多已知的调控区域大而复杂,但初步的体内功能研究表明,短至6个碱基对(bp)的DNA序列可以驱动报告基因在特定组织中的精确表达,并且两个核苷酸的替换会导致表达区域的变化。该项目将开创一种新的自下而上的方法,通过描述所有6碱基对(bp)序列的调控潜力来破译脊椎动物的调控代码。这些短基序将在斑马鱼的发育过程中通过转基因来测试增强子的活性。该项目的第一个具体目标是通过计算设计一个报告结构集合,该集合紧凑地覆盖了所有6-聚合体,并能够有效地表征6-聚合体增强子的功能。这是一个具有挑战性的计算问题,在这个阶段设计和实现的算法将为未来增强子实验和许多其他生物分析的高效设计低聚物提供强大的资源。第二个目标是计算和分析实验验证的增强子的基因组分布,并使用结果来解释表达数据。最后,第三个目标是开发和测试多个调节6-mers相互作用的模型。将特别注意增强剂组合的加性效应和确定潜在的消声剂。通过从头开始构建和功能翻译监管语言,该项目补充了自顶向下理解监管代码的努力。这个项目将对许多生物学领域产生巨大的影响,从发育和进化生物学到基因组注释。各种临床应用也将受益于这个项目,如干细胞再生疗法的重编程策略。此外,它将为基因治疗铺平道路,通过基因工程调控元件,在不同的时间点将化合物驱动到特定的组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Jean Riesenfeld其他文献
Samantha Jean Riesenfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Jean Riesenfeld', 18)}}的其他基金
A Novel Approach to Decoding Vertebrate Gene Regulation
解码脊椎动物基因调控的新方法
- 批准号:
8317019 - 财政年份:2011
- 资助金额:
$ 5.77万 - 项目类别:
A Novel Approach to Decoding Vertebrate Gene Regulation
解码脊椎动物基因调控的新方法
- 批准号:
8724822 - 财政年份:2011
- 资助金额:
$ 5.77万 - 项目类别:
A Novel Approach to Decoding Vertebrate Gene Regulation
解码脊椎动物基因调控的新方法
- 批准号:
8127192 - 财政年份:2011
- 资助金额:
$ 5.77万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 5.77万 - 项目类别:
Continuing Grant














{{item.name}}会员




