High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
基本信息
- 批准号:8236749
- 负责人:
- 金额:$ 26.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdverse effectsAffectAreaBindingBiologicalBone GrowthCellsChelating AgentsClinicalCouplingDevicesDiagnosticFillerFractureGoalsHybridsHydroxyapatitesImplantIn VitroInflammatoryInterphaseLeadLocationMagnetic Resonance ImagingMechanicsMolecular WeightOperative Surgical ProceduresOutcomeParticle SizePatientsPhasePropertyResearchRiskStressStructureStudy SectionSurfaceTechnologyTensile StrengthTreatment CostVascularizationWeight-Bearing stateX-Ray Computed Tomographybasebiodegradable polymerbiomaterial compatibilitybonebone healingcalcium phosphatechemical bondclinical applicationimprovedin vitro Modelinnovationinstrumentinterfacialnew technologynovelphosphonatepoly(lactide)polymerizationrepairedresponsesample fixationsuccesstetracalcium phosphatetricalcium phosphate
项目摘要
DESCRIPTION (provided by applicant): Bioresorbable composites made from degradable polymers and bioactive calcium phosphates are clinically desirable for bone fixation and repair, because they do not have to be removed by second surgery after bone heals. However, a critical barrier to wider and more successful use of current bioresorbable polylactide/calcium phosphate (PLA/CaP) composites to bone fixation is their weak mechanical properties. The goal of this project is to develop a new technology to improve the mechanical strength of PLA/CaP composites to match that of natural bone, so that they can have wider application in load-bearing locations. Due to the critical importance of the interfacial adhesion between the PLA matrix and CaP filler within the composites, the strategy is to develop a technology that effectively combines a core-shell organic-inorganic hybrid structure with a special phosphonic chelating agent and surface initiated polymerization to establish direct chemical bonds between the PLA matrix and CaP filler. Based on the improved interface, we target to improve the mechanical strengths of the bioresorbable composites to the average value of natural bone (e.g. 100 MPa as the target value of the tensile strength). Moreover, by additional optimizing a number of critical variables (e.g. CaP phase, particle size, PLA molecular weight (MW) and CaP/PLA mass ratio), we seek to adjust the mechanical strength of PLA/CaP composites into a wide range (e.g. tensile strength 50 - 100 MPa), so that they can best match those of natural bones from varied locations. Both of the initial mechanical strength and the degradation dependent mechanical strength as well as biological interaction of the composites will be studied in the proposed research. Success of the proposed research will produce bioresorbable composites with improved biocompatibility and high and adjustable mechanical strength which can well match new bone growth. This will allow such bioresorbable materials to be more widely and successfully applied to bone fixation and repair, particularly for the load-bearing areas, by maintaining sufficient strength during bone healing, eliminating stress-shielding, and avoiding the clinical adverse inflammatory effects. Clinically, using such bioresorbable materials instead of current non-resorbable metallic devices would be of great benefit to patients, by avoiding the interference with diagnostic instruments (e.g. computed tomography (CT)), eliminating the possible second surgery to remove the device after bone heals, and reducing the total treatment cost.
PUBLIC HEALTH RELEVANCE: A technology that effectively combines a core-shell organic-inorganic hybrid structure with modern surface initiated polymerization will be developed to improve the mechanical strength of bioresorbable composites to well match bone. This will allow such materials to be successfully used for bone fixation in load-bearing locations, and eliminate second surgery to remove them after bone heals as that for current non-resorbable metallic implants.
描述(由申请人提供):由可降解聚合物和生物活性磷酸钙制成的生物可吸收复合材料在临床上用于骨固定和修复是理想的,因为它们在骨愈合后不必通过第二次手术去除。然而,目前生物可吸收聚乳酸/磷酸钙(PLA/CaP)复合材料用于骨固定的一个关键障碍是其较弱的力学性能。该项目的目标是开发一种新技术,提高PLA/CaP复合材料的机械强度,使其与天然骨相匹配,从而使其在承重部位有更广泛的应用。由于复合材料中PLA基体和CaP填料之间的界面粘附至关重要,因此该策略是开发一种将核壳有机无机杂化结构与特殊的膦螯合剂和表面引发聚合有效结合的技术,以建立PLA基体和CaP填料之间的直接化学键。基于改进后的界面,我们的目标是将生物可吸收复合材料的机械强度提高到天然骨的平均值(例如100 MPa作为抗拉强度的目标值)。此外,通过额外优化一些关键变量(例如CaP相,粒径,PLA分子量(MW)和CaP/PLA质量比),我们寻求将PLA/CaP复合材料的机械强度调整到一个大范围内(例如抗拉强度50 - 100 MPa),以便它们能够最好地匹配来自不同位置的天然骨骼。本文将对复合材料的初始机械强度和降解相关机械强度以及生物相互作用进行研究。该研究的成功将产生生物可吸收复合材料,具有更好的生物相容性和高且可调节的机械强度,可以很好地匹配新骨的生长。这将允许这种生物可吸收材料更广泛和成功地应用于骨固定和修复,特别是在承重区域,通过在骨愈合期间保持足够的强度,消除应力屏蔽,避免临床不良炎症反应。在临床上,使用这种生物可吸收材料代替目前不可吸收的金属装置对患者有很大的好处,避免了对诊断仪器(如计算机断层扫描(CT))的干扰,消除了骨愈合后可能的第二次手术移除装置,降低了总治疗成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tongxin Wang其他文献
Tongxin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tongxin Wang', 18)}}的其他基金
High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
- 批准号:
8627479 - 财政年份:2012
- 资助金额:
$ 26.48万 - 项目类别:
High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
- 批准号:
8449662 - 财政年份:2012
- 资助金额:
$ 26.48万 - 项目类别:
Surface Initiated Polymerization for Bioresorbable PLA/CaP Composites with Improv
Improv 生物可吸收 PLA/CaP 复合材料的表面引发聚合
- 批准号:
8112194 - 财政年份:2010
- 资助金额:
$ 26.48万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 26.48万 - 项目类别:
Discovery Grants Program - Individual