Radiomics of NSCLC
非小细胞肺癌的放射组学
基本信息
- 批准号:8445420
- 负责人:
- 金额:$ 49.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-09 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:Biological MarkersBiopsyCancer CenterCaringCharacteristicsClinicClinicalComputer softwareConsentDataData SetDatabasesDevelopmentDiagnosticDiseaseEnvironmentEvidence Based MedicineGene ExpressionGene Expression ProfileGene Expression ProfilingGoalsHistopathologyHome environmentImageImage AnalysisIndividualInstitutesInstitutionLiquid substanceMalignant NeoplasmsMalignant neoplasm of lungMedicalMissionModelingMolecularMolecular ProfilingMonitorNetherlandsNon-Small-Cell Lung CarcinomaOutcomePET/CT scanPatientsPatternPhasePhase III Clinical TrialsPositron-Emission TomographyPrincipal InvestigatorProgression-Free SurvivalsProspective StudiesProteinsProteomicsProtocols documentationRandomizedRegimenRelative (related person)ReproducibilityResearchResolutionSamplingScanningSourceSpecialized Program of Research ExcellenceStagingTestingTherapeuticTissuesWorkarmbasecancer carechemotherapycostdata miningeffective therapyfluorodeoxyglucose positron emission tomographyimprovedmeetingsmortalityoutcome forecastpredictive modelingprognosticprogramsprospectiveresearch studyrespiratoryresponsesocioeconomicsstatisticstumor
项目摘要
DESCRIPTION (provided by applicant): Non small cell lung cancer, NSCLC, is the most prevalent of cancers and has one of the highest mortality rates. Thus, any advance in the ability to predict response and individualize treatment will have great impact. NSCLC patients are routinely imaged with PET and CT for staging and monitoring, respectively. The major hypothesis of the current work is that quantitative analysis of these clinical images can be prognostic and predictive of response to specific therapies. If true, these results would have medical significance through improved care and outcomes. This would also have socioeconomic significance as it would allow advanced, evidence based medicine to be practiced using standard-of-care images. To test this hypothesis, this project will extract mineable imaging data from two powerful patient databases at the Moffitt Cancer Center in Tampa, FL and the MAASTRO clinic in Maastricht, the Netherlands. These databases contain images, gene expression profiling and outcomes data from hundreds of stage III and IV NSCLC patients. Over 100 features will be extracted from each image using developmental commercial software. Features extracted retrospectively from the Moffitt dataset will be quantitatively analyzed to generate predictive models for gene expression patterns and progression-free survival. These models will be tested in the MAASTRO data set and re-tested using prospective data from Moffitt acquired under rigorous conditions. An important outcome of this work will define the rigor and resolution needed for images to be useful in predictive models. With the right combination of features, the needed rigor and resolution may be readily achievable in a clinical setting. A capstone experiment will add image feature extraction to a theragnostic trial that matches therapy to individual patient expression patterns for two proteins that predict response to specific therapies. The hypothesis to be tested is that image features can segment patients to specific therapy regimens without the molecular biopsy data.
RELEVANCE: This work will determine if quantitative analysis of images obtained during clinical standards of care can be used to prognose outcome or predict response to specific therapies in lung cancer. If true, this would increase the utility of clinical imaging in this disease and potentially improve the care for up to 215,000 patients annually without necessarily increasing in the cost.
描述(由申请人提供):非小细胞肺癌(NSCLC)是最常见的癌症,死亡率最高。因此,在预测反应和个体化治疗能力方面的任何进步都将产生巨大影响。NSCLC患者常规分别用PET和CT成像以进行分期和监测。目前工作的主要假设是,这些临床图像的定量分析可以预测和预测对特定治疗的反应。如果是真的,这些结果将通过改善护理和结果而具有医学意义。这也将具有社会经济意义,因为它将允许使用标准护理图像实践先进的循证医学。 为了验证这一假设,该项目将从佛罗里达州坦帕的Moffitt癌症中心和荷兰马斯特里赫特的MAASTRO诊所的两个强大的患者数据库中提取可开采的成像数据。这些数据库包含数百名III期和IV期NSCLC患者的图像、基因表达谱和结局数据。将使用开发商业软件从每张图像中提取100多个特征。将对从Moffitt数据集中回顾性提取的特征进行定量分析,以生成基因表达模式和无进展生存期的预测模型。这些模型将在MAASTRO数据集中进行测试,并使用在严格条件下从Moffitt获得的前瞻性数据进行重新测试。这项工作的一个重要成果将定义图像在预测模型中有用所需的严格性和分辨率。通过正确的功能组合,可以在临床环境中轻松实现所需的严格性和分辨率。 一个顶点实验将增加图像特征提取到一个治疗不确定性试验中,该试验将治疗与两种蛋白质的个体患者表达模式相匹配,这两种蛋白质预测对特定治疗的反应。待检验的假设是,图像特征可以在没有分子活检数据的情况下将患者分割为特定的治疗方案。
相关性:这项工作将确定在临床护理标准期间获得的图像的定量分析是否可用于诊断结果或预测对肺癌特定疗法的反应。如果这是真的,这将增加临床成像在这种疾病中的效用,并可能改善每年多达215,000名患者的护理,而不一定增加成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT A GATENBY其他文献
ROBERT A GATENBY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT A GATENBY', 18)}}的其他基金
Application of Evolutionary Principles to Maintain Cancer Control (PQ21)
应用进化原理维持癌症控制(PQ21)
- 批准号:
8683131 - 财政年份:2012
- 资助金额:
$ 49.18万 - 项目类别:
Application of Evolutionary Principles to Maintain Cancer Control (PQ21)
应用进化原理维持癌症控制(PQ21)
- 批准号:
8862176 - 财政年份:2012
- 资助金额:
$ 49.18万 - 项目类别:
Application of Evolutionary Principles to Maintain Cancer Control (PQ21)
应用进化原理维持癌症控制(PQ21)
- 批准号:
8384513 - 财政年份:2012
- 资助金额:
$ 49.18万 - 项目类别:
Application of Evolutionary Principles to Maintain Cancer Control (PQ21)
应用进化原理维持癌症控制(PQ21)
- 批准号:
8535708 - 财政年份:2012
- 资助金额:
$ 49.18万 - 项目类别:
相似海外基金
卵巣癌/子宮体癌における薬剤感受性メチル化診断キットの開発とLiquid Biopsyへの応用
卵巢癌/子宫内膜癌药物敏感甲基化诊断试剂盒的研制及其在液体活检中的应用
- 批准号:
24K02584 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
グリオーマのliquid biopsyによるメチル化網羅的解析とprecision medicineへの応用
胶质瘤液体活检甲基化综合分析及其在精准医疗中的应用
- 批准号:
24K12271 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Liquid biopsyを用いた炎症性腸疾患の早期診断法開発
液体活检炎症性肠病早期诊断方法的开发
- 批准号:
24K10595 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
精神的長期ストレス児童の口腔細菌叢と唾液成分の解析:唾液 liquid biopsyを目指して
长期精神应激儿童口腔菌群和唾液成分分析:唾液液体活检
- 批准号:
24K13206 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MONALISA: A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis
MONALISA:一项 SIOPEN 实用临床试验,通过液体活检监测神经母细胞瘤复发 敏感性分析
- 批准号:
10103126 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
EU-Funded
A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis (MONALISA)
SIOPEN 通过液体活检敏感性分析 (MONALISA) 监测神经母细胞瘤复发的实用临床试验
- 批准号:
10110442 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
EU-Funded
Mutated human oncogene recombinant nucleosomes as reference materials for liquid biopsy
突变人癌基因重组核小体作为液体活检参考材料
- 批准号:
10090714 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Collaborative R&D
肝細胞癌における術中門脈血を用いたliquid biopsyの検討
肝细胞癌术中门静脉血液体活检检查
- 批准号:
24K19404 - 财政年份:2024
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetic diagnosis of vascular malformations by liquid biopsy and its application to precision medicine
液体活检对血管畸形的基因诊断及其在精准医疗中的应用
- 批准号:
23K09072 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Breath biopsy technology targeting for volatile oxidized lipids
针对挥发性氧化脂质的呼吸活检技术
- 批准号:
23K06080 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)