Dynamic Magnetic Targeting of Activated Brain Macrophages for Glioma Therapy
激活脑巨噬细胞的动态磁靶向用于神经胶质瘤治疗
基本信息
- 批准号:8638705
- 负责人:
- 金额:$ 26.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesBlood - brain barrier anatomyBrainBrain NeoplasmsBrain PathologyCarbon NanotubesCarbon nanoparticleCellsCombined Modality TherapyDataDegenerative DisorderDiseaseDistantDoseEncephalitisEnvironmentFluorescenceGliomaGoalsHumanImmuneImmune responseImmunosuppressive AgentsImmunotherapeutic agentImmunotherapyImplantIn VitroInjection of therapeutic agentLabelLifeLiteratureMagnetic Resonance ImagingMagnetismMalignant GliomaMalignant NeoplasmsMalignant neoplasm of brainMeasuresMediatingMethodologyMethodsMicrogliaMicroscopyModelingMovementMusMyelogenousMyeloid CellsPathologyPatientsPenetrationProcessPropertyProteinsReportingRouteSiteStrokeSurfaceTechniquesTestingTimeTissuesToxic effectTranslatingTranslationsTransplantationTraumaTreatment EfficacyTreatment FailureTumor Immunitybasecell motilitycytotoxicfluorescence microscopein vivoinnovationiron oxidemacrophagemagnetic fieldnanoparticlenerve stem cellnovelnovel strategiesparticlepreventprogramspublic health relevancerepairedresearch studyresponsetraffickingtumortumor microenvironmentuptake
项目摘要
PROJECT SUMMARY
Even when treated with aggressive current therapies, most patients with primary malignant brain tumors
survive less than two years. Our goal is to develop novel immunotherapies against malignant glioma that are
based on activating and targeting tumor-associated macrophages (TAMs) to the glioma. Although
immunotherapy is being studied as a potential treatment, the blood-brain barrier and local tumor
immunosuppressive milieu often prevent penetration of cytotoxic antibodies or immune cells into the brain. The
local delivery of immunostimulatory molecules such as CpG can overcome this suppressive environment,
However, high CpG doses could cause toxic brain inflammation. Therefore, there is a pressing need for a
safer, more effective, targeted strategy that will enhance the CNS immune response to malignant brain tumors.
We recently took advantage of the inherent phagocytic properties of TAMs to enhance CpG uptake by the cells
using carbon nanoparticles and demonstrated a 60% cure rate in treated mice bearing gliomas. In these
experiments however, the activated TAMs cleared from the tumor environment within seven days of the first
nanoparticle injection, which might have contributed to the treatment failure in some mice that were not cured
of their tumors. We hypothesize that methods which prolong the presence of activated TAMs within brain
tumors should enhance the anti-tumor efficacy of this nanoparticle-based therapy. The objective of this
proposal is to test a dynamically programmable, low-intensity magnetic field (DPMF) for its ability to selectively
route and traffic brain microglia and macrophages that have been treated with CpG conjugated to iron oxide
nanoparticles (IONP-CpG). Unlike current methods of generating magnetic fields, our grid-generated DPMF
allow us a broad range of control over the spatial and temporal profile of the magnetic field, which should
potentially enhance TAM routing to gliomas. We will first define conditions for DPMF-mediated motility of
IONP-treated microglia cells in vitro. After optimizing the DPMF programming and functionalization of IONP,
we will then develop our technique to modulate the trafficking and retention of microglia and macrophage in
normal mouse brains. Finally, we will determine the in vivo efficacy of DPMF-IONP therapy in mice with
intracranial gliomas. We expect DPMF to retain and traffic the activated macrophage and microglia to the
tumors, thereby enhancing the therapeutic efficacy of this novel therapy. The results from these studies will not
only significantly impact the treatment of gliomas, but should also impact treatment of other CNS pathologies
such as stroke or trauma, in which microglia and macrophages are known to participate in the disease process
and/or CNS repair. Finally, combined use of IONP and DPMF has the potential to modulate and direct neural
stem cell trafficking following CNS transplantation.
项目摘要
即使接受侵略性当前疗法治疗,大多数原发性恶性脑肿瘤的患者也
生存不到两年。我们的目标是开发针对恶性神经胶质瘤的新型免疫疗法
基于激活和靶向与肿瘤相关的巨噬细胞(TAM)的基础。虽然
正在研究免疫疗法作为潜在疗法,血脑屏障和局部肿瘤
免疫抑制环境通常可以防止细胞毒性抗体或免疫细胞渗透到大脑中。这
局部传递免疫刺激分子(例如CPG)可以克服这种抑制性环境,
但是,高CPG剂量可能引起有毒的脑部炎症。因此,迫切需要
更安全,更有效,有针对性的策略将增强CNS对恶性脑肿瘤的免疫反应。
我们最近利用TAM的固有吞噬特性来增强细胞的CpG摄取
使用碳纳米颗粒,并在带有神经胶质瘤的治疗小鼠中证明了60%的治愈率。在这些
但是,实验,激活的TAM从肿瘤环境中清除了,在第一次的七天内
纳米颗粒注射,这可能导致某些未固化的小鼠的治疗失败
他们的肿瘤。我们假设该方法延长了大脑内活化的TAM的存在
肿瘤应增强基于纳米颗粒的治疗的抗肿瘤功效。这个目的
建议是测试动态编程的低强度磁场(DPMF)的选择性的能力
路线和交通脑小胶质细胞和巨噬细胞已用氧化铁偶联的CpG处理的巨噬细胞
纳米颗粒(IONP-CPG)。与当前产生磁场的方法不同,我们的网格生成的DPMF
允许我们对磁场的空间和时间剖面进行广泛的控制,应
有可能增强与神经胶质瘤的TAM路由。我们将首先定义DPMF介导的运动的条件
IONP处理的小胶质细胞体外。优化了IONP的DPMF编程和功能化后,
然后,我们将开发我们的技术来调节小胶质细胞和巨噬细胞的贩运和保留率
正常的小鼠大脑。最后,我们将确定DPMF-IOMP治疗在具有的小鼠中的体内功效
颅内神经胶质瘤。我们希望DPMF将激活的巨噬细胞和小胶质细胞保留和流动到
肿瘤,从而增强了这种新型疗法的治疗功效。这些研究的结果不会
仅显着影响神经胶质瘤的治疗,但也应影响其他CNS病理的治疗
例如中风或创伤,其中的小胶质细胞和巨噬细胞参与疾病过程
和/或CNS维修。最后,IONP和DPMF的联合使用具有调节和直接神经的潜力
中枢神经系统移植后干细胞运输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behnam Badie其他文献
Behnam Badie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behnam Badie', 18)}}的其他基金
Improving Glioma Immunotherapy Efficacy by Regulating Tumor Inflammation
通过调节肿瘤炎症提高胶质瘤免疫治疗效果
- 批准号:
10750788 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10696180 - 财政年份:2021
- 资助金额:
$ 26.99万 - 项目类别:
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10306300 - 财政年份:2021
- 资助金额:
$ 26.99万 - 项目类别:
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10488199 - 财政年份:2021
- 资助金额:
$ 26.99万 - 项目类别:
Novel Cell Delivery Method for Brain Tumor Therapy
用于脑肿瘤治疗的新型细胞递送方法
- 批准号:
8637349 - 财政年份:2014
- 资助金额:
$ 26.99万 - 项目类别:
Dynamic Magnetic Targeting of Activated Brain Macrophages for Glioma Therapy
激活脑巨噬细胞的动态磁靶向用于神经胶质瘤治疗
- 批准号:
8726502 - 财政年份:2013
- 资助金额:
$ 26.99万 - 项目类别:
Role of Receptor for Advanced Glycation End Product (RAGE) Pathway in Brain Tumor
高级糖基化终产物 (RAGE) 通路受体在脑肿瘤中的作用
- 批准号:
8890797 - 财政年份:2011
- 资助金额:
$ 26.99万 - 项目类别:
Role of Receptor for Advanced Glycation End Product (RAGE) Pathway in Brain Tumor
高级糖基化终产物 (RAGE) 通路受体在脑肿瘤中的作用
- 批准号:
8507470 - 财政年份:2011
- 资助金额:
$ 26.99万 - 项目类别:
Role of Receptor for Advanced Glycation End Product (RAGE) Pathway in Brain Tumors
高级糖基化终产物 (RAGE) 通路受体在脑肿瘤中的作用
- 批准号:
9312100 - 财政年份:2011
- 资助金额:
$ 26.99万 - 项目类别:
Role of Receptor for Advanced Glycation End Product (RAGE) Pathway in Brain Tumors
高级糖基化终产物 (RAGE) 通路受体在脑肿瘤中的作用
- 批准号:
9899943 - 财政年份:2011
- 资助金额:
$ 26.99万 - 项目类别:
相似海外基金
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
- 批准号:
10667764 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
- 批准号:
10735206 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
- 批准号:
10698442 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Developing new therapeutic strategies for brain metastasis
开发脑转移的新治疗策略
- 批准号:
10578405 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Bacteriophage virus-like particle based vaccines against oxycodone
基于噬菌体病毒样颗粒的羟考酮疫苗
- 批准号:
10750819 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别: