Integrating context-specific networks to predict ataxia genes
整合上下文特定网络来预测共济失调基因
基本信息
- 批准号:8477601
- 负责人:
- 金额:$ 23.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAtaxiaBasic ScienceBioinformaticsBiological ProcessBrainCandidate Disease GeneCategoriesCerebellumClinicalComplementDNADataData SetDiseaseDisease PathwayDrug FormulationsFutureGene ProteinsGenesGenomicsHandHereditary DiseaseHumanImageryInflammatoryInternetKnowledgeLeadLearningMalignant NeoplasmsMethodologyMiningModelingMutationNetwork-basedPhenotypeProbabilityProcessProteinsResearchRouteSpecificityTestingTimeTissuesVariantWorkbasedata integrationdisease phenotypefunctional genomicshuman datahuman diseasenovelprotein Bprototypepublic health relevancetool
项目摘要
DESCRIPTION (provided by applicant):
Integrating large-scale genomics data has huge potential to accelerate the identification of disease genes in human. Three major challenges lie in the current integrative approach for predicting disease genes. First, previous integrations in general limit genomic data input to one species at a time, while disease datasets are often generated in multiple model organisms. Second, public functional genomic datasets are dominated and biased by certain data types and accessible tissues, which can be addressed by expert curation of input datasets. Third, when multiple tissue-specific networks have been generated, a mathematical formulation is lacking to prioritize among these competing networks for the specific disease under consideration. This collaborative proposal aims at addressing the above challenges by exploring a prototype of bioinformatics tools to integrate multiple relevant global and tissue-specific networks across mammalian species targeting a specific disease, here ataxia. This proposal is based on our preliminary data in developing both global and cerebellum-specific networks to prioritize ataxia associated genes, and on the two PIs' complementary expertise in genomic data integration and experimental ataxia gene confirmation. We will 1) use domain-specific and multiple species data to establish global, brain, cerebellum, related tissue, and ataxia-specific networks, and develop web tools to explore these networks; and 2) develop multiple kernel learning algorithms to weigh and integrate multiple networks to predict ataxia-associated genes. Although the algorithms will be developed targeting ataxia only, we envision that this expert-driven integrative approach will be adaptable to other disease gene identification scenarios.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margit Burmeister其他文献
Margit Burmeister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margit Burmeister', 18)}}的其他基金
Integrating context-specific networks to predict ataxia genes
整合上下文特定网络来预测共济失调基因
- 批准号:
8606905 - 财政年份:2013
- 资助金额:
$ 23.33万 - 项目类别:
Ataxia gene identification by integrated genomic analysis
通过整合基因组分析鉴定共济失调基因
- 批准号:
8287395 - 财政年份:2012
- 资助金额:
$ 23.33万 - 项目类别:
Ataxia gene identification by integrated genomic analysis
通过整合基因组分析鉴定共济失调基因
- 批准号:
8509126 - 财政年份:2012
- 资助金额:
$ 23.33万 - 项目类别:
Ataxia gene identification by integrated genomic analysis
通过整合基因组分析鉴定共济失调基因
- 批准号:
8424951 - 财政年份:2012
- 资助金额:
$ 23.33万 - 项目类别:
Ataxia gene identification by integrated genomic analysis
通过整合基因组分析鉴定共济失调基因
- 批准号:
8606519 - 财政年份:2012
- 资助金额:
$ 23.33万 - 项目类别:
Comprehensive genomic approach to rare hearing disorders and ataxia
罕见听力障碍和共济失调的综合基因组方法
- 批准号:
7769460 - 财政年份:2009
- 资助金额:
$ 23.33万 - 项目类别:
Comprehensive genomic approach to rare hearing disorders and ataxia
罕见听力障碍和共济失调的综合基因组方法
- 批准号:
7648320 - 财政年份:2009
- 资助金额:
$ 23.33万 - 项目类别:
Comprehensive genomic approach to rare hearing disorders and ataxia
罕见听力障碍和共济失调的综合基因组方法
- 批准号:
7857691 - 财政年份:2009
- 资助金额:
$ 23.33万 - 项目类别:
SNPs in Neurotransmitter Systems & Personality Traits
神经递质系统中的 SNP
- 批准号:
7140522 - 财政年份:2005
- 资助金额:
$ 23.33万 - 项目类别:
SNPs in Neurotransmitter Systems & Personality Traits
神经递质系统中的 SNP
- 批准号:
6983924 - 财政年份:2005
- 资助金额:
$ 23.33万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant