mtDNA heteroplasmy in development and differentiation: an in vitro approach
发育和分化中的线粒体DNA异质性:一种体外方法
基本信息
- 批准号:9347551
- 负责人:
- 金额:$ 23.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Human mitochondrial DNA (mtDNA) disorders affect multiple tissues, are clinically complex and often fatal.
These disorders represent a large group of diseases with heterogeneous clinical and pathological expressions
characterized by improper functions of and sometimes irreversible damage to specialized neurons. They are
fundamentally untreatable and most often impair metabolically active tissues such as muscle, retina and brain.
The causes and mechanisms of neuronal cell death and related defects in many of these disorders, although
not fully understood, derive from mutations in mtDNA or decline in energy levels. Clinical severity can be influ-
enced by the percentage of pathogenic versus normal mtDNA genomes present in affected cells
(heteroplasmy). The origins and timing of heteroplasmy are not clear, but may include a very high percentage
of intracellular clonal expansion (homoplasmy) by unknown mechanisms of pathogenic mtDNA's over time. In
addition, inability to manipulate mtDNA directly in situ has been an impediment to understanding the effects of
pathogenic mtDNA burdens on self-renewal and differentiation.
Our recent research developments and expertise in (a) self-renewal and differentiation of human pluri-
potent stem cell (hPSC)-derived human neural progenitors (hNPs) and (b) development and utilization of a
novel mitochondrial transfection methodology for delivering exogenous mtDNA into hNPs, provides a strong
foundation for analyzing the effects of heteroplasmy on neuronal development and neurodegeneration. The
overarching hypothesis is that mtDNA mutations in hNPs will clonally expand and upon exceeding a critical
threshold, will cause abnormal hNP self-renewal, affect differentiation potential and contribute to mitochondrial
dysfunction in differentiated neurons.
We propose three specific aims to test the overall hypothesis and investigate the effects of pathogenic
mtDNA (LS- Leigh's syndrome; LHON- Leber's hereditary optic neuropathy; KSS- Kearns sayers syndrome)
burdens which match various known age-related diseases that exhibit mitochondrial mutations or altered bio-
energetics. Aim 1 will test the hypothesis that introduced pathogenic mtDNA (from LHON, LS and KSS) will
affect self-renewal properties in hNPs after they cross a specific threshold. Aim 2 will test the hypothesis that
increased pathogenic mtDNA levels will affect differentiation potential of LHON, LS, KSS-hNPs into neurons.
Aim 3 will test the hypothesis that increased pathogenic mtDNA levels will alter the mitochondrial function of
LHON, LS, KSS-hNP derived neurons. Through complementary approaches involving novel in vitro stem cell
model systems, next generation sequencing methodologies and mitochondrial functional characterizations, we
expect to develop innovative approaches to capture and analyze the threshold effects of pathogenic mtDNA on
neuronal differentiation and bioenergetics.
The scientific impact of this study is the availability of a novel mitochondrial transfection methodology
for production of disease-specific stem cell progenitors with mtDNA mutations that will for the first time, enable
us to monitor and quantitate mitochondrial DNA dynamics during neuronal differentiation. An additional impact
is based on use of stringent next generation sequencing approaches to quantitate heteroplasmy during neu-
ronal differentiation. More broadly, while neuro-mitochondrial disorders are targeted here first, other basic
research fields, including metabolic disease, diabetes, aging, autoimmune and cardiovascular disease re-
search, are likely to benefit from the proposed experimental approaches.
项目总结
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts.
- DOI:10.3390/cells10092255
- 发表时间:2021-08-31
- 期刊:
- 影响因子:6
- 作者:Bakare AB;Rao RR;Iyer S
- 通讯作者:Iyer S
Stem cells, neural progenitors, and engineered stem cells.
- DOI:10.1007/978-1-4939-2152-2_19
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Rao RR;Iyer S
- 通讯作者:Iyer S
Novel therapeutic approaches for Leber's hereditary optic neuropathy.
- DOI:
- 发表时间:2013-03
- 期刊:
- 影响因子:1.4
- 作者:S. Iyer
- 通讯作者:S. Iyer
Arts, Science, Engineering and Medicine Collaborate to Educate Public on Bioenergetics.
艺术、科学、工程和医学合作对公众进行生物能量学教育。
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Tompkins,Emily;Faris,Sarah;Hughes,Laura;Maurakis,Eugene;Lesnefsky,EdwardJoseph;Rao,RajRaghavendra;Iyer,Shilpa
- 通讯作者:Iyer,Shilpa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shilpa Iyer其他文献
Shilpa Iyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shilpa Iyer', 18)}}的其他基金
Metabolic regulation of MODS in pediatric mitochondrial disorders
小儿线粒体疾病中 MODS 的代谢调节
- 批准号:
10744903 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
mtDNA heteroplasmy in development and differentiation: an in-vitro approach
发育和分化中的线粒体DNA异质性:一种体外方法
- 批准号:
8497267 - 财政年份:2013
- 资助金额:
$ 23.69万 - 项目类别:
相似海外基金
Clonal analysis of cancer by mitochondrial DNA barcoding
通过线粒体 DNA 条形码对癌症进行克隆分析
- 批准号:
10612155 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
Associations of Mitochondrial DNA Alterations with Alzheimer's Disease Related Brain Health
线粒体 DNA 改变与阿尔茨海默病相关大脑健康的关联
- 批准号:
10724103 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
Defining the function of Complex I truncating mutations in cancer
定义复合物 I 截短突变在癌症中的功能
- 批准号:
10563387 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
Associations among maternal lifetime psychosocial stress, prenatal systemic and placental oxidative stress mixtures, and child asthma
母亲一生心理社会压力、产前全身和胎盘氧化应激混合物与儿童哮喘之间的关联
- 批准号:
10660716 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
Mitochondrial Genetic Variation Across Human Tissues
人体组织的线粒体遗传变异
- 批准号:
10741135 - 财政年份:2023
- 资助金额:
$ 23.69万 - 项目类别:
Effect of Perinatal Exposure to Metals on Lung Function Trajectories and Mitochondrial DNA Heteroplasmy from Childhood to Adolescence
围产期金属暴露对儿童期至青春期肺功能轨迹和线粒体 DNA 异质性的影响
- 批准号:
10446235 - 财政年份:2022
- 资助金额:
$ 23.69万 - 项目类别:
Mechanisms of mutant mitochondrial genome modulation
突变线粒体基因组调节机制
- 批准号:
10406641 - 财政年份:2022
- 资助金额:
$ 23.69万 - 项目类别:
Effect of Perinatal Exposure to Metals on Lung Function Trajectories and Mitochondrial DNA Heteroplasmy from Childhood to Adolescence
围产期金属暴露对儿童期至青春期肺功能轨迹和线粒体 DNA 异质性的影响
- 批准号:
10624291 - 财政年份:2022
- 资助金额:
$ 23.69万 - 项目类别:














{{item.name}}会员




