Targeting Tumors with Resealable Nanovesicles Permeabilized by NIR Light
利用近红外光透化的可重新密封纳米囊泡靶向肿瘤
基本信息
- 批准号:8609764
- 负责人:
- 金额:$ 38.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-19 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsBiocompatibleBiodistributionBiologicalBiological ProcessBiotinBlood CirculationBlood flowBody TemperatureBuffaloesCaliberDepositionDoxorubicinDrug Delivery SystemsEnvironmentExposure toFiber OpticsHeartHeatingHumanIn VitroIonsLabelLeadLightLiposomesMalignant NeoplasmsMedicalMembraneMethodsNude MicePenetrationPermeabilityPharmaceutical PreparationsPhospholipidsPhysiologicalPorphyrinsProceduresProcessProteinsRecoveryRetrievalSamplingSideSiteSolid NeoplasmSolutionsStimulusSystemTechnologyTemperatureTherapeuticTimeTissuesUniversitiesVesicleXenograft procedurebasechemical reactioncontrolled releaseirradiationmonomernanocarriernanoparticlenanoscalenanovesiclenovelnovel strategiespH gradientpreventpublic health relevanceresearch studyresponsesealtumorunilamellar vesicle
项目摘要
PROJECT SUMMARY
At present, few synthetic systems can achieve robust, on-demand spatial and temporal control of micro or
nanovesicle permeabilization in biological environments. We propose to build upon proof-of-principle
experiments establishing the feasibility of such a membrane permeabilization system and to apply this
technology towards: 1) triggering drug release in tumors and 2) capturing tumor microvasculature contents via
a remote loading and retrieval approach. Several methods for cargo release driven by external stimuli driven
have been proposed; whereas to our knowledge the concept of remote capture and retrieval of microvessel
contents using triggered permeability in nanovesicles has not yet been explored. So far, essentially all
biocompatible approaches for externally triggered membrane permeabilization from nanocarriers comprise
systems that release their contents when the surrounding temperatures are raised by a few degrees above
body temperature via direct or indirect heating. However, such mechanisms are not amenable to trigger-side
release modulation and the narrow thermal operating window precludes carrier stability at physiological
temperatures. Furthermore, the lack of stability in physiological conditions prevents more demanding
applications of these materials such as triggered release at later time points as well as remote loading and
recovery. Here, we propose a fundamentally new controlled release system based on porphyrin-
phospholipid doped (PoPD) liposomes transiently permeabilized directly by near infrared (NIR) light, a
clinically-applicable stimulus that has negligible actuation in the "off state" and minimal interference with
biological tissues. The ability to open and close nanovesicles in the body with precise spatial and temporal
control could lead to entirely new approaches to treating and understanding cancer. We synthesized a novel
light-absorbing monomer esterified from clinically approved components that gave rise to highly stable
porphyrin bilayer. Remarkably, rapid and complete cargo release was induced upon brief exposure to mild NIR
irradiation using an optimal porphyrin-phospholipid (but not free porphyrin) doping. Unlike previously described
systems, release occurred in the absence of bulk solution photothermal heating or chemical reactions. In
physiological conditions in vitro, NIR irradiation induced a 25,000 fold increase in the release rate of
actively loaded doxorubicin, orders of magnitude greater than previously described triggered release
methods. Induced permeability could be used for both unloading and loading cargo, and could be modulated
by varying porphyrin doping, irradiation intensity and irradiation duration for highly tunable manipulation of
permeabilization. This project has three specific aims. Aim 1: Develop micro and nanovesicles that open and
close on demand in response to NIR light;. Aim 2: Use near infrared light to deliver cancer therapeutics to
tumors; Aim 3: Sample tumor microvasculature contents using a capture and retrieve strategy.
项目摘要
目前,很少有合成系统能够实现对微或微系统的鲁棒的、按需的空间和时间控制。
生物环境中的纳米囊泡透化。我们建议建立在原理证明的基础上
建立这种膜透化系统的可行性的实验,并将其应用于
该技术旨在:1)触发肿瘤中的药物释放,以及2)通过微血管捕获肿瘤微血管内容物。
远程加载和检索方法。由外界刺激驱动的货物释放的几种方法
已经提出;而据我们所知,远程捕获和检索微血管的概念
还没有探索在纳米囊泡中使用触发渗透性的内容物。到目前为止,基本上所有
用于从纳米载体外部触发膜透化的生物相容性方法包括
当周围温度升高几度时,
通过直接或间接加热的体温。然而,这样的机制不适合于制造商侧。
释放调节和窄的热操作窗口排除了生理温度下的载体稳定性,
温度此外,在生理条件下缺乏稳定性,
这些材料的应用,例如在稍后的时间点触发释放以及远程加载,
复苏在这里,我们提出了一个全新的基于卟啉的控释系统-
通过近红外(NIR)光直接瞬时透化的磷脂掺杂(PoPD)脂质体,
临床适用的刺激,在“关闭状态”下具有可忽略的致动,
生物组织在体内以精确的空间和时间打开和关闭纳米囊泡的能力
控制可能导致治疗和理解癌症的全新方法。我们合成了一本小说
从临床批准的组分酯化的吸光单体,
卟啉双层值得注意的是,短暂暴露于轻度近红外后,会诱导快速而完全的货物释放
使用最佳的卟啉-磷脂(但不是游离卟啉)掺杂进行辐照。与先前描述的不同,
系统,释放发生在本体溶液光热加热或化学反应的情况下。在
在体外生理条件下,NIR照射诱导了25,000倍的释放速率增加,
活性负载的多柔比星,数量级大于先前描述的触发释放
方法.诱导渗透率可用于卸载和装载货物,并可调节
通过改变卟啉掺杂、照射强度和照射持续时间,
透化作用该项目有三个具体目标。目标1:开发微囊泡和纳米囊泡,
响应NIR光按需关闭;。目标2:使用近红外光将癌症治疗剂输送到
肿瘤;目的3:使用捕获和检索策略对肿瘤微血管内容物进行采样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan F Lovell其他文献
異なる2つのステージを標的とするマラリアワクチンの開発に向けて
开发针对两个不同阶段的疟疾疫苗
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wei-Chiao Huang;Moustafa T Mabrouk;Luwen Zhou;馬場 みなみ;橘 真由美;鳥居 本 美;高島 英造;Emily Locke;Jordan Plieskatt;C Richter King;Camila H Coelho;Patrick E Duffy;Carole Long;坪井 敬文;三浦 憲豊;Yimin Wu;石野 智子;Jonathan F Lovell - 通讯作者:
Jonathan F Lovell
Molecular mechanisms of sporozoite transmission to mammals, the target of the first malaria vaccine
子孢子传播给哺乳动物的分子机制,这是第一个疟疾疫苗的目标
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wei-Chiao Huang;Moustafa T Mabrouk;Luwen Zhou;馬場 みなみ;橘 真由美;鳥居 本 美;高島 英造;Emily Locke;Jordan Plieskatt;C Richter King;Camila H Coelho;Patrick E Duffy;Carole Long;坪井 敬文;三浦 憲豊;Yimin Wu;石野 智子;Jonathan F Lovell;Tomoko Ishino.;Tomoko Ishino.;Tomoko ISHINO - 通讯作者:
Tomoko ISHINO
Jonathan F Lovell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan F Lovell', 18)}}的其他基金
Developing a Multivalent Subunit Particle Vaccine Against Tuberculosis
开发抗结核病多价亚单位颗粒疫苗
- 批准号:
10598146 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Developing a Multivalent Subunit Particle Vaccine Against Tuberculosis
开发抗结核病多价亚单位颗粒疫苗
- 批准号:
10441958 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Light-Triggered Drug Release in Primed Pancreatic Tumors
胰腺肿瘤中的光触发药物释放
- 批准号:
8562197 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
Targeting Tumors with Resealable Nanovesicles Permeabilized by NIR Light
利用近红外光透化的可重新密封纳米囊泡靶向肿瘤
- 批准号:
8737994 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
Targeting Tumors with Resealable Nanovesicles Permeabilized by NIR Light
利用近红外光透化的可重新密封纳米囊泡靶向肿瘤
- 批准号:
9135540 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
Light-Triggered Drug Release in Primed Pancreatic Tumors
胰腺肿瘤中的光触发药物释放
- 批准号:
9130825 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
Chemophototherapy with Porphyrin-phospholipid Liposomes Permeabilized by Red Light
使用红光透化的卟啉磷脂脂质体进行化学光疗
- 批准号:
10190938 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
Light-Triggered Drug Release in Primed Pancreatic Tumors
胰腺肿瘤中的光触发药物释放
- 批准号:
8717660 - 财政年份:2013
- 资助金额:
$ 38.94万 - 项目类别:
相似海外基金
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 38.94万 - 项目类别:
Collaborative R&D
Biocompatible Pickering Nanoemulsions for Cosmetics Applications
用于化妆品应用的生物相容性 Pickering 纳米乳液
- 批准号:
2902166 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Studentship
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Theoretical development of biocompatible and shape-memorable magnesium alloys
生物相容性形状记忆镁合金的理论发展
- 批准号:
22KF0239 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ERI: Durability of Biocompatible Elastomers under Extreme Environments: Unveiling the Aging Mechanisms
ERI:极端环境下生物相容性弹性体的耐久性:揭示老化机制
- 批准号:
2301031 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Standard Grant
FET: Small: Hybrid Electrical, Ionic, and Biocompatible Artificial Synaptic Transistors
FET:小型:混合电气、离子和生物相容性人工突触晶体管
- 批准号:
2246855 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Standard Grant
Biocompatible Flexible Microfabricated Sensors for Surgical Applications
适用于外科应用的生物相容性柔性微加工传感器
- 批准号:
2321238 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Standard Grant
Metal extraction using biocompatible ionic liquid system assisted by machine learning
机器学习辅助下使用生物相容性离子液体系统提取金属
- 批准号:
22KF0286 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Biocompatible fluorophores for shortwave infrared imaging
用于短波红外成像的生物相容性荧光团
- 批准号:
10737471 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
BIOSCIENCE FOR RENEWABLE RESOURCES AND CLEAN GROWTH - Expanding Synthetic Biology using Biocompatible Reactions
可再生资源和清洁增长的生物科学 - 利用生物相容性反应扩展合成生物学
- 批准号:
2890724 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Studentship














{{item.name}}会员




