Development of a practical quantitative non-contrast approach for cerebrovascular MRI

开发实用的脑血管 MRI 定量非对比方法

基本信息

  • 批准号:
    10426036
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Multi-contrast MRI sequences before and after gadolinium enhancement of the carotid plaque can significantly improve determination of stroke risk compared with simple carotid stenosis measurements. While the improved depiction of plaque features with MRI can be used to better individualize therapy for veterans with carotid disease, its use has been limited because it requires gadolinium-based contrast agents, extended exam times, and extensive interpretive training. To address these remaining limitations and move our field forward into clinical application, our multicenter team of investigators will combine our extensive collective experience in carotid MRI to develop a novel rapid non- contrast quantitative carotid imaging method to automatically and accurately identify vulnerable plaque components. Our goal is to establish a method for accurate carotid plaque mapping that can be obtained with 1 to 3 MRI sequences taking ≤10 minutes for the total plaque exam. To accomplish this goal, we will consolidate our different quantitative carotid MRI sequences into two different methods of measuring these quantitative parameters (NEW1 and NEW2). We will then compare these two methods against each other and against the conventional multi-sequence contrast enhanced carotid MRI method (CONV) in a study of 100 veterans with carotid disease at our 5 VAMC’s. Scans from repeat visits will be used to test repeatability of the parametric measurements and will be performed with high-performance neck-shape-specific (NSS) carotid coils. Our hypothesis is that vulnerable carotid plaque components (intraplaque hemorrhage, lipid rich necrotic core, calcification, total plaque volume, and thin or ruptured fibrous cap) can be accurately identified using rapidly acquired quantitative MRI parameters (relaxation times, diffusion coefficient, and proton density signal intensity). Specifically, that NEW1 or NEW2 or both are non-inferior to CONV in measuring plaque components and equivalent or more accurate than CONV relative to histology. Aim 1 will determine whether NEW1 or NEW2 is more repeatable, Aim 2 will determine whether either or both are non-inferior to CONV in plaque component determination, and Aim 3 will determine the relative accuracy of the three methods, NEW1, NEW2, and CONV compared with histology. This research will provide a rapid and reliable quantitative approach for a comprehensive carotid artery exam. This will benefit veterans at risk for stroke but presently under-treated because the diameter narrowing does not meet criteria for intervention. It will spare others with stenotic but stable plaque the risk of surgery. After demonstrating this method can automatically identify plaque features without expert oversight at the 5 academic VAMCs, this technique will be directly applicable in the community hospital setting. Although the technology has been developed on a single vendor’s MRI platform, the NSS coils and related pulse sequences developed will be transferrable to any MRI scanner hardware and applicable to imaging other vascular territories and nonvascular tissue. This rapid non-contrast MRI protocol will fundamentally change the clinical management of cerebrovascular disease.
颈动脉钆增强前后的多对比MRI序列 斑块可以显着提高确定中风风险相比,简单的 颈动脉狭窄测量。虽然改善了对斑块特征的描述, MRI可用于颈动脉疾病退伍军人更好的个性化治疗,其用途 因为它需要钆基造影剂, 时间和广泛的口译培训。为了解决这些剩余的局限性, 将我们的领域推向临床应用,我们的多中心研究团队将 联合收割机结合我们在颈动脉MRI方面的广泛集体经验,开发一种新的快速非- 自动准确识别颈动脉造影定量成像方法 易损斑块成分。我们的目标是建立一种准确的颈动脉 斑块标测可通过1至3个MRI序列获得,时间≤10分钟, 总斑块考试。为了实现这一目标,我们将巩固我们的不同 定量颈动脉MRI序列分为两种不同的测量方法, 定量参数(NEW 1和NEW 2)。然后我们将比较这两种方法 并与传统的多序列对比度增强 颈动脉MRI方法(CONV)在100名退伍军人的研究与颈动脉疾病在我们的5 VAMC的。重复访视的扫描将用于检测参数的重复性 测量,并将使用高性能颈形特异性(NSS) 颈动脉线圈我们假设颈动脉易损斑块成分(斑块内 出血、脂质丰富的坏死核心、钙化、总斑块体积和薄或 破裂的纤维帽)可以使用快速采集的定量MRI准确识别 参数(弛豫时间、扩散系数和质子密度信号强度)。 具体而言,NEW 1或NEW 2或两者在测量菌斑方面不劣于CONV 组件和等效或更准确的CONV相对于组织学。目标1将 确定NEW 1或NEW 2是否更可重复,目标2将确定是否 在斑块成分测定方面,任一或两者均不劣于CONV,且Aim 3 将确定NEW 1、NEW 2和CONV三种方法的相对精度 与组织学相比。该研究将为我国的农业生产提供一种快速、可靠的定量分析方法。 全面颈动脉检查的方法。这将有利于退伍军人的风险, 中风,但目前治疗不足,因为直径缩小不符合 干预的标准。它将使其他狭窄但稳定的斑块免于 手术经过论证该方法可以自动识别斑块特征 如果没有5个学术VAMC的专家监督,这种技术将直接 适用于社区医院。虽然这项技术已经 在单一供应商的MRI平台上开发,NSS线圈和相关脉冲 开发的序列将可转移到任何MRI扫描仪硬件, 对其他血管区域和非血管组织进行成像。这种快速的非对比MRI 该方案将从根本上改变脑血管疾病的临床管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald S Treiman其他文献

Gerald S Treiman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerald S Treiman', 18)}}的其他基金

Development of a practical quantitative non-contrast approach for cerebrovascular MRI
开发实用的脑血管 MRI 定量非对比方法
  • 批准号:
    10116773
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
High-Resolution, Motion-corrected 3D Cine MRI of Carotid Plaque
颈动脉斑块的高分辨率、运动校正 3D 电影 MRI
  • 批准号:
    8924765
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
High-Resolution, Motion-corrected 3D Cine MRI of Carotid Plaque
颈动脉斑块的高分辨率、运动校正 3D 电影 MRI
  • 批准号:
    9046375
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
High-Resolution, Motion-corrected 3D Cine MRI of Carotid Plaque
颈动脉斑块的高分辨率、运动校正 3D 电影 MRI
  • 批准号:
    9337257
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了