How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications
受损 DNA 是如何形成的及其后续化学:基础研究和应用
基本信息
- 批准号:10413873
- 负责人:
- 金额:$ 65.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiochemicalBiochemistryBiotechnologyBreathingCarbonCationsCellsCellular biologyChemistryDNADNA AlkylationDNA DamageDNA-protein crosslinkDiseaseEnzyme Inhibitor DrugsEtiologyHealthHistonesHumanHydrogenInvestigationIonizing radiationLesionLysineMalignant NeoplasmsMinor GrooveModificationMolecularMolecular BiologyNitrogenNucleic AcidsNucleosome Core ParticleNucleosomesOrganic ChemistryPathway interactionsPrevalenceProteinsPurinesRadiation-Sensitizing AgentsResearchResearch Project GrantsSignal TransductionSiteStructureTestingTubeadjudicationdesignexperimental studyhalogenationhistone modificationinterestmigrationnoveloxidative damageprogramstool
项目摘要
Our research group addresses fundamental questions concerning how nucleic acids are damaged and what the
biochemical consequences of damage are. We also capitalize on the fundamental discoveries made in these
investigations to create enzyme inhibitors, radiosensitizing agents, and tools that are useful in biotechnology. To
bring these research projects to fruition, we utilize organic chemistry, biochemistry, as well as molecular and cell
biology. Over more than two decades, this research approach has enabled us to uncover novel pathways of
DNA damage, adjudicate mechanistic controversies, and reveal biochemical effects of damaged DNA that
illustrate that nucleic acid damage itself is not always the end of the story. We request support to continue all 3
aspects of this research program. We will utilize our ability to independently generate reactive intermediates to
elucidate questions concerning oxidative damage in free and nucleosomal DNA. For instance, we will examine
the reactivity of nitrogen radicals, which we demonstrated are capable of initiating tandem lesion formation via
hydrogen atom abstraction, unlike most carbon radicals. Tandem lesions are a deleterious form of DNA damage
that are a hallmark of g-radiolysis. Some of the nitrogen radicals are also chameleon-like in that their pKa's are
sufficiently high that reasonable quantities of the respective radical cations are present at neutral pH. Radical
cations are important species produced from the direct effect of ionizing radiation and initiate hole transfer in
DNA. We will study hole transfer in nucleosomal DNA by independently generating radical cations in nucleosome
core particles (NCPs) at defined sites. This will enable us to determine the effects of NCP structure on hole
migration, a topic that is of increasing interest due to the realization that hole transfer is important in signaling
between proteins and DNA. Efforts on understanding the effects of DNA damage will focus on chemistry in NCPs
and the consequences of DNA damage-induced histone modification. We will build upon our discoveries that
alkylated DNA forms DNA-protein cross-links (DPCs) with histones and that histone catalyzed chemistry of
oxidized abasic sites results in modification of lysine residues. These studies will range from experiments in test
tubes to cells to determine the prevalence of histone modifications formed in cells and to identify their biochemical
("downstream") effects. We will also determine whether DPC formation occurs in NCPs when DNA is alkylated
in the minor groove. Finally, we will utilize halogenated purines to potentiate the effects of DNA alkylation by
stabilizing the DPCs formed. This research will contribute to our fundamental understanding of DNA damage
and its connection to the etiology and treatment of disease.
我们的研究小组致力于解决有关核酸如何被破坏以及核酸被破坏的基本问题。
损伤的生化后果是。我们还利用这些领域的基本发现
研究创造酶抑制剂、放射增敏剂和可用于生物技术的工具。到
为了使这些研究项目取得成果,我们利用有机化学、生物化学以及分子和细胞
生物学。二十多年来,这种研究方法使我们能够发现新的途径
DNA 损伤、裁决机制争议并揭示受损 DNA 的生化效应
说明核酸损伤本身并不总是故事的结局。我们请求支持以继续所有 3 个任务
该研究计划的各个方面。我们将利用我们独立生成反应中间体的能力
阐明有关游离 DNA 和核小体 DNA 氧化损伤的问题。例如,我们将检查
氮自由基的反应性,我们证明氮自由基能够通过以下方式引发串联损伤形成:
与大多数碳自由基不同,氢原子抽象。串联损伤是 DNA 损伤的一种有害形式
这是 g 放射分解的标志。一些氮自由基也像变色龙一样,因为它们的 pKa 是
足够高,使得在中性pH下存在合理数量的相应自由基阳离子。激进的
阳离子是电离辐射直接作用产生的重要物种,并引发空穴传输
脱氧核糖核酸。我们将通过在核小体中独立产生自由基阳离子来研究核小体 DNA 中的空穴转移
位于指定位置的核心颗粒(NCP)。这将使我们能够确定 NCP 结构对孔的影响
迁移,由于认识到空穴转移在信号传导中的重要作用,这个话题越来越受到人们的关注
介于蛋白质和DNA之间。了解 DNA 损伤影响的努力将集中在 NCP 中的化学上
以及 DNA 损伤引起的组蛋白修饰的后果。我们将基于我们的发现
烷基化 DNA 与组蛋白形成 DNA-蛋白质交联 (DPC),并且组蛋白催化化学反应
氧化的无碱基位点导致赖氨酸残基的修饰。这些研究范围包括测试实验
管到细胞以确定细胞中形成的组蛋白修饰的普遍性并鉴定其生化
(“下游”)效应。我们还将确定当 DNA 烷基化时 NCP 中是否会形成 DPC
在小凹槽中。最后,我们将利用卤化嘌呤来增强 DNA 烷基化的效果
稳定形成的 DPC。这项研究将有助于我们对 DNA 损伤的基本理解
及其与疾病的病因学和治疗的联系。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactivity and DNA Damage by Independently Generated 2'-Deoxycytidin-N4-yl Radical.
- DOI:10.1021/jacs.1c06425
- 发表时间:2021-09-15
- 期刊:
- 影响因子:15
- 作者:Peng H;Jie J;Mortimer IP;Ma Z;Su H;Greenberg MM
- 通讯作者:Greenberg MM
Covalent Modification of Bromodomain Proteins by Peptides Containing a DNA Damage-Induced, Histone Post-Translational Modification.
通过含有DNA损伤引起的翻译后修饰的肽对溴结构域蛋白的共价修饰。
- DOI:10.1002/cbic.202200373
- 发表时间:2022-11-18
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Protein Domain Specific Covalent Inhibition of Human DNA Polymerase β.
- DOI:10.1002/cbic.202100247
- 发表时间:2021-08-17
- 期刊:
- 影响因子:0
- 作者:Yuhas SC;Majumdar A;Greenberg MM
- 通讯作者:Greenberg MM
Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor.
- DOI:10.1021/jacs.1c02453
- 发表时间:2021-06-02
- 期刊:
- 影响因子:15
- 作者:Yuhas SC;Laverty DJ;Lee H;Majumdar A;Greenberg MM
- 通讯作者:Greenberg MM
Histone Deacetylase 1 Inhibition by Peptides Containing a DNA Damage-Induced, Nonenzymatic, Histone Covalent Modification.
- DOI:10.1021/acs.biochem.3c00007
- 发表时间:2023-03
- 期刊:
- 影响因子:2.9
- 作者:Marco Paolo Jacinto;M. Greenberg
- 通讯作者:Marco Paolo Jacinto;M. Greenberg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARC M GREENBERG其他文献
MARC M GREENBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARC M GREENBERG', 18)}}的其他基金
How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications
受损 DNA 是如何形成的及其后续化学:基础研究和应用
- 批准号:
10161792 - 财政年份:2019
- 资助金额:
$ 65.68万 - 项目类别:
Mechanistic Studies of Nucleic Acid Damage and Their Application
核酸损伤机制研究及其应用
- 批准号:
8008951 - 财政年份:2010
- 资助金额:
$ 65.68万 - 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
- 批准号:
7644456 - 财政年份:2008
- 资助金额:
$ 65.68万 - 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
- 批准号:
8316417 - 财政年份:2008
- 资助金额:
$ 65.68万 - 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
- 批准号:
7438366 - 财政年份:2008
- 资助金额:
$ 65.68万 - 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
- 批准号:
8094455 - 财政年份:2008
- 资助金额:
$ 65.68万 - 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
- 批准号:
7881428 - 财政年份:2008
- 资助金额:
$ 65.68万 - 项目类别:
DNA Repair and Replication: Fundamental Studies and Applications
DNA 修复和复制:基础研究和应用
- 批准号:
8320230 - 财政年份:2002
- 资助金额:
$ 65.68万 - 项目类别:
Repair, Replication, and Detection of Oxidatively Damaged DNA
氧化损伤 DNA 的修复、复制和检测
- 批准号:
7677835 - 财政年份:2002
- 资助金额:
$ 65.68万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 65.68万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




