How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications

受损 DNA 是如何形成的及其后续化学:基础研究和应用

基本信息

  • 批准号:
    10413873
  • 负责人:
  • 金额:
    $ 65.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Our research group addresses fundamental questions concerning how nucleic acids are damaged and what the biochemical consequences of damage are. We also capitalize on the fundamental discoveries made in these investigations to create enzyme inhibitors, radiosensitizing agents, and tools that are useful in biotechnology. To bring these research projects to fruition, we utilize organic chemistry, biochemistry, as well as molecular and cell biology. Over more than two decades, this research approach has enabled us to uncover novel pathways of DNA damage, adjudicate mechanistic controversies, and reveal biochemical effects of damaged DNA that illustrate that nucleic acid damage itself is not always the end of the story. We request support to continue all 3 aspects of this research program. We will utilize our ability to independently generate reactive intermediates to elucidate questions concerning oxidative damage in free and nucleosomal DNA. For instance, we will examine the reactivity of nitrogen radicals, which we demonstrated are capable of initiating tandem lesion formation via hydrogen atom abstraction, unlike most carbon radicals. Tandem lesions are a deleterious form of DNA damage that are a hallmark of g-radiolysis. Some of the nitrogen radicals are also chameleon-like in that their pKa's are sufficiently high that reasonable quantities of the respective radical cations are present at neutral pH. Radical cations are important species produced from the direct effect of ionizing radiation and initiate hole transfer in DNA. We will study hole transfer in nucleosomal DNA by independently generating radical cations in nucleosome core particles (NCPs) at defined sites. This will enable us to determine the effects of NCP structure on hole migration, a topic that is of increasing interest due to the realization that hole transfer is important in signaling between proteins and DNA. Efforts on understanding the effects of DNA damage will focus on chemistry in NCPs and the consequences of DNA damage-induced histone modification. We will build upon our discoveries that alkylated DNA forms DNA-protein cross-links (DPCs) with histones and that histone catalyzed chemistry of oxidized abasic sites results in modification of lysine residues. These studies will range from experiments in test tubes to cells to determine the prevalence of histone modifications formed in cells and to identify their biochemical ("downstream") effects. We will also determine whether DPC formation occurs in NCPs when DNA is alkylated in the minor groove. Finally, we will utilize halogenated purines to potentiate the effects of DNA alkylation by stabilizing the DPCs formed. This research will contribute to our fundamental understanding of DNA damage and its connection to the etiology and treatment of disease.
我们的研究小组致力于解决有关核酸如何被破坏以及 生物化学的后果。我们还利用了这些领域的基本发现, 研究创造酶抑制剂、放射增敏剂和生物技术中有用的工具。到 为了实现这些研究项目,我们利用有机化学,生物化学以及分子和细胞 生物学在过去的二十多年里,这种研究方法使我们能够发现新的途径, DNA损伤,裁定机制争议,并揭示受损DNA的生化效应, 说明核酸损伤本身并不总是故事结局。我们请求支持继续所有3个 这个研究项目的各个方面。我们将利用我们独立产生活性中间体的能力, 阐明有关游离和核小体DNA氧化损伤的问题。例如,我们将检查 氮自由基的反应性,我们证明了能够启动串联损伤形成, 氢原子抽象,不像大多数碳原子团。串联损伤是DNA损伤的一种有害形式 这是G-辐解的标志。一些氮自由基也是变色龙样的,因为它们的pKa是 足够高,使得在中性pH下存在合理量的相应自由基阳离子。 阳离子是由电离辐射的直接效应产生的重要物质, DNA.我们将通过在核小体中独立产生自由基阳离子来研究核小体DNA中的空穴转移 核心颗粒(NCP)在定义的网站。这将使我们能够确定NCP结构对空穴的影响 迁移,由于认识到空穴传输在信令中的重要性, 蛋白质和DNA之间的联系理解DNA损伤影响的努力将集中在NCP的化学上 以及DNA损伤诱导的组蛋白修饰的后果。我们将以我们的发现为基础, 烷基化的DNA与组蛋白形成DNA-蛋白质交联(DPC),并且组蛋白催化的 氧化的脱碱基位点导致赖氨酸残基的修饰。这些研究将包括测试中的实验 以确定细胞中形成的组蛋白修饰的普遍性,并鉴定其生物化学性质。 (“下游”)影响。我们还将确定当DNA被烷基化时,DPC的形成是否发生在NCP中 在小沟里最后,我们将利用卤代嘌呤来增强DNA烷基化的作用, 稳定形成的DPC。这项研究将有助于我们对DNA损伤的基本理解 以及它与疾病的病因学和治疗的联系。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactivity and DNA Damage by Independently Generated 2'-Deoxycytidin-N4-yl Radical.
  • DOI:
    10.1021/jacs.1c06425
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Peng H;Jie J;Mortimer IP;Ma Z;Su H;Greenberg MM
  • 通讯作者:
    Greenberg MM
Covalent Modification of Bromodomain Proteins by Peptides Containing a DNA Damage-Induced, Histone Post-Translational Modification.
通过含有DNA损伤引起的翻译后修饰的肽对溴结构域蛋白的共价修饰。
Protein Domain Specific Covalent Inhibition of Human DNA Polymerase β.
Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor.
  • DOI:
    10.1021/jacs.1c02453
  • 发表时间:
    2021-06-02
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Yuhas SC;Laverty DJ;Lee H;Majumdar A;Greenberg MM
  • 通讯作者:
    Greenberg MM
Histone Deacetylase 1 Inhibition by Peptides Containing a DNA Damage-Induced, Nonenzymatic, Histone Covalent Modification.
  • DOI:
    10.1021/acs.biochem.3c00007
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Marco Paolo Jacinto;M. Greenberg
  • 通讯作者:
    Marco Paolo Jacinto;M. Greenberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARC M GREENBERG其他文献

MARC M GREENBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARC M GREENBERG', 18)}}的其他基金

How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications
受损 DNA 是如何形成的及其后续化学:基础研究和应用
  • 批准号:
    10161792
  • 财政年份:
    2019
  • 资助金额:
    $ 65.68万
  • 项目类别:
Mechanistic Studies of Nucleic Acid Damage and Their Application
核酸损伤机制研究及其应用
  • 批准号:
    8008951
  • 财政年份:
    2010
  • 资助金额:
    $ 65.68万
  • 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
  • 批准号:
    7644456
  • 财政年份:
    2008
  • 资助金额:
    $ 65.68万
  • 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
  • 批准号:
    8316417
  • 财政年份:
    2008
  • 资助金额:
    $ 65.68万
  • 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
  • 批准号:
    7438366
  • 财政年份:
    2008
  • 资助金额:
    $ 65.68万
  • 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
  • 批准号:
    8094455
  • 财政年份:
    2008
  • 资助金额:
    $ 65.68万
  • 项目类别:
The Chemistry-Biology Interface Program at Johns Hopkins University
约翰·霍普金斯大学化学-生物界面项目
  • 批准号:
    7881428
  • 财政年份:
    2008
  • 资助金额:
    $ 65.68万
  • 项目类别:
Investigations of DNA Damage and Repair
DNA损伤与修复的研究
  • 批准号:
    6438067
  • 财政年份:
    2002
  • 资助金额:
    $ 65.68万
  • 项目类别:
DNA Repair and Replication: Fundamental Studies and Applications
DNA 修复和复制:基础研究和应用
  • 批准号:
    8320230
  • 财政年份:
    2002
  • 资助金额:
    $ 65.68万
  • 项目类别:
Repair, Replication, and Detection of Oxidatively Damaged DNA
氧化损伤 DNA 的修复、复制和检测
  • 批准号:
    7677835
  • 财政年份:
    2002
  • 资助金额:
    $ 65.68万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 65.68万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 65.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了