Estimating health utilities using QOL data among patients with gyn malignancies

使用妇科恶性肿瘤患者的生活质量数据估计健康效用

基本信息

项目摘要

DESCRIPTION (provided by applicant): This research project is designed to determine if algorithms that use quality of life (QOL) data to predict utilities, which are used in the calculaton of a quality-adjusted life year (QALY) in economic analyses, are comparable to traditional methods of utility assessment. Gynecologic cancers are underrepresented in the published cost-effectiveness literature in part due to the lack of appropriate prospective utilities data collection within clinical trials. However, prospective QOL data are frequently collected within clinical trials. The ability to accurately predict utility values from QOL surveys could open existing, large clinical trial databases for more accurate cost-effectiveness and comparative effectiveness research. This study will prospectively and longitudinally collect utility and qualit of life data from gynecologic cancer patients before, during and after treatment. The utility-prediction algorithms will be compared to utility instruments and will be enhanced to be applicable to the gynecologic cancer patient population. Establishing the performance of utility-estimating algorithms using QOL data in this population will enhance the ability of investigators to conduct comparative effectiveness research of gynecologic cancer treatment strategies. PUBLIC HEALTH RELEVANCE: Gynecologic cancers are underrepresented in the published cost-effectiveness literature in part due to the lack of appropriate prospective utilities data collection within clinical trials. The ability to accurately predict utilities from data that are aready collected within clinical trials could open existing, large clinical trial databases for more accurte cost-effectiveness and comparative effectiveness research. This study is designed to assess and enhance the performance of existing algorithms that have been developed in other cancers for use in gynecologic cancer populations.
描述(由申请人提供):本研究项目旨在确定使用生活质量(QOL)数据预测效用的算法(用于经济分析中质量调整生命年(QALY)的计算)是否与效用评估的传统方法相当。妇科癌症在已发表的成本效益文献中代表性不足,部分原因是临床试验中缺乏适当的前瞻性效用数据收集。然而,前瞻性QOL数据经常在临床试验中收集。从QOL调查中准确预测效用值的能力可以打开现有的大型临床试验数据库,以进行更准确的成本效益和比较有效性研究。本研究将前瞻性和纵向收集妇科癌症患者治疗前、治疗中和治疗后的效用和生活质量数据。效用预测算法将与效用工具进行比较,并将得到增强,以适用于妇科癌症患者人群。在这一人群中使用QOL数据建立效用估计算法的性能将提高研究者进行妇科癌症治疗策略的比较有效性研究的能力。 公共卫生关系:妇科癌症在已发表的成本效益文献中代表性不足,部分原因是临床试验中缺乏适当的前瞻性效用数据收集。从临床试验中收集的数据中准确预测效用的能力可以打开现有的大型临床试验数据库,以进行更准确的成本效益和比较有效性研究。本研究旨在评估和增强在其他癌症中开发的用于妇科癌症人群的现有算法的性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PATRICK O. MONAHAN其他文献

PATRICK O. MONAHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PATRICK O. MONAHAN', 18)}}的其他基金

Develop and Validate Tool to Monitor Patient Centered Outcomes Through Caregivers
开发和验证工具以通过护理人员监控以患者为中心的结果
  • 批准号:
    8858485
  • 财政年份:
    2013
  • 资助金额:
    $ 8.05万
  • 项目类别:
Develop and Validate Tool to Monitor Patient Centered Outcomes Through Caregivers
开发和验证工具以通过护理人员监控以患者为中心的结果
  • 批准号:
    8728724
  • 财政年份:
    2013
  • 资助金额:
    $ 8.05万
  • 项目类别:
Develop and Validate Tool to Monitor Patient Centered Outcomes Through Caregivers
开发和验证工具以通过护理人员监控以患者为中心的结果
  • 批准号:
    8577327
  • 财政年份:
    2013
  • 资助金额:
    $ 8.05万
  • 项目类别:
Estimating health utilities using QOL data among patients with gyn malignancies
使用妇科恶性肿瘤患者的生活质量数据估计健康效用
  • 批准号:
    8463486
  • 财政年份:
    2012
  • 资助金额:
    $ 8.05万
  • 项目类别:
Responsiveness and Clinical Validity of PROMIS Pain and Depression Measures
PROMIS 疼痛和抑郁措施的反应性和临床有效性
  • 批准号:
    8541698
  • 财政年份:
    2012
  • 资助金额:
    $ 8.05万
  • 项目类别:
Responsiveness and Clinical Validity of PROMIS Pain and Depression Measures
PROMIS 疼痛和抑郁措施的反应性和临床有效性
  • 批准号:
    8458228
  • 财政年份:
    2012
  • 资助金额:
    $ 8.05万
  • 项目类别:
Responsiveness and Clinical Validity of PROMIS Pain and Depression Measures
PROMIS 疼痛和抑郁措施的反应性和临床有效性
  • 批准号:
    8720699
  • 财政年份:
    2012
  • 资助金额:
    $ 8.05万
  • 项目类别:
Improving Item Bias Detection in Cancer Control Scales
改进癌症控制量表中的项目偏差检测
  • 批准号:
    6953171
  • 财政年份:
    2004
  • 资助金额:
    $ 8.05万
  • 项目类别:
Improving Item Bias Detection in Cancer Control Scales
改进癌症控制量表中的项目偏差检测
  • 批准号:
    6889155
  • 财政年份:
    2004
  • 资助金额:
    $ 8.05万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.05万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了