Notch Pathway Regulation of Intestinal Epithelial Cell Homeostasis
肠上皮细胞稳态的Notch通路调节
基本信息
- 批准号:8631158
- 负责人:
- 金额:$ 32.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-18 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultApoptosisBiological AssayBiological ModelsCell CountCell Differentiation processCell Fate ControlCell LineageCell ProliferationCell physiologyCellsChronicColumnar CellComputer SimulationDataEndocrineEnterocytesEpithelial CellsGene Expression ProfilingGenesGeneticGenetic ModelsGrowthHomeostasisHumanImmunohistochemistryIn VitroIntestinesKineticsLaboratory ResearchMaintenanceMalignant NeoplasmsMeasuresModelingMusNotch Signaling PathwayOrganoidsPathway interactionsPlayPopulationPopulation DynamicsProcessRadiationRadiation InjuriesReceptor SignalingRegulationReverse Transcriptase Polymerase Chain ReactionRoleSecretory CellSignal PathwaySignal TransductionSourceStem cellsSystemTestingTimeTissuesToxic effectVillusbasecell typedesigngenetic manipulationhuman diseasehuman stem cellsintestinal epitheliummathematical modelmouse modelnotch proteinprogenitorpublic health relevancerepairedresponsestemstem cell fatestem cell populationtranscription factortranscriptome sequencing
项目摘要
Project Summary
This revised new R01 application focuses on pathways regulating intestinal epithelial cell homeostasis.
The project investigates the role of the Notch signaling pathway for regulation of intestinal stem cells,
examining both active and quiescent stem cell populations marked by Lgr5, Olfm4, Bmi1, and Lrig1.
Notch is well established as a critical regulator of cell fate via regulation of the secretory lineage-
specific transcription factor Atoh1. Our recent studies have shown that Notch also plays a distinct role
in the maintenance of intestinal stem cells in an Atoh1-independent mechanism and this finding serves
as the underlying rationale for this application. We have established that chronic Notch inhibition in
adult mice results in decreased progenitor cell proliferation and a marked decrease in expression of the
crypt base columnar cell (CBC) marker Olfm4. Furthermore, these studies demonstrated that the
actively cycling crypt base columnar stem cell (CBC) is a direct cellular Notch target and that disruption
of Notch signaling results in loss of CBCs. The overriding hypothesis for this proposal is: Notch
signaling regulates the transition from ISC to fated progenitor cells and loss of Notch signaling leads to
depletion of the stem cell pool and activation of quiescent stem cells to replenish the pool. To test this
hypothesis studies will examine intact mouse models (genetic and pharmacologic), mouse intestinal
organoids and, importantly, a new human organoid model. This project will, for the first time, test
whether Notch regulation of human intestine parallels the findings in the mouse. Genetic manipulation
and marking of ISC cell populations in mouse will take advantage of Cre drivers specific for active or
quiescent ISCs. Strains of floxed-gene mice will allow deletion or activation of Notch pathway
components in specific ISC cell populations. RNA-Seq gene expression profiling will be used to identify
Notch-responsive genes and computational modeling will inform our understanding of progenitor cell
population dynamics. Three specific aims are proposed: (1) Test the hypothesis that CBC stem cells
are dynamically regulated by Notch signaling; (2) Test the hypothesis that Notch regulates the ability of
quiescent stem cells to repopulate the active cycling stem and progenitor cell pool; (3) Test the
hypothesis that Notch signaling regulates cellular differentiation and stem cell function in human in vitro
derived intestinal organoids. These studies are important to further our understanding of the function of
different intestinal stem cell populations and to characterize the importance of Notch signaling for
human intestinal epithelial cell homeostasis. Since current human disease therapies are under design
to target the Notch pathway, it is crucial to understand the function of this pathway in the intestine to
avoid the intestinal toxicity that can result from systemic disruption of this pathway.
项目摘要
这个修订后的新R 01应用程序的重点是调节肠道上皮细胞稳态的途径。
该项目研究Notch信号通路在调节肠道干细胞中的作用,
检查由Lgr 5、Olfm 4、Bmi 1和Lrig 1标记的活性和静止干细胞群体。
Notch是公认的通过调节分泌谱系来调节细胞命运的关键调节因子-
特异性转录因子Atoh 1。我们最近的研究表明,Notch也发挥着独特的作用,
在维持肠干细胞的Atoh 1独立的机制,这一发现服务于
作为本申请的基本原理。我们已经确定,慢性Notch抑制,
成年小鼠导致祖细胞增殖减少,
隐窝基底柱状细胞(CBC)标记Olfm 4。此外,这些研究表明,
活跃循环的隐窝基底柱状干细胞(CBC)是直接的细胞Notch靶点,
Notch信号转导的缺失导致CBC的丢失。该提案的主要假设是:
信号传导调节从ISC到命运祖细胞的转变,Notch信号传导的缺失导致
干细胞库的耗尽和静止干细胞的活化以补充库。为了验证这一
假设研究将检查完整的小鼠模型(遗传和药理学),小鼠肠
类器官,重要的是,一种新的人类类器官模型。该项目将首次测试
Notch对人类肠道的调节是否与小鼠中的发现相似。遗传操作
并且小鼠中ISC细胞群的标记将利用对活性或特异性的Cre驱动子。
静止ISC。基因缺失小鼠的品系将允许Notch途径的缺失或激活
特定ISC细胞群中的组分。RNA-Seq基因表达谱将用于鉴定
Notch-responsive基因和计算模型将为我们理解祖细胞
种群动态提出了三个具体目标:(1)测试CBC干细胞的假设,
受Notch信号传导的动态调节;(2)检验Notch调节细胞凋亡的能力的假设。
静止干细胞以重新填充活跃的循环干细胞和祖细胞库;(3)测试
Notch信号转导调控体外人细胞分化和干细胞功能假说
衍生的肠类器官这些研究对于我们进一步了解
不同的肠道干细胞群体,并表征Notch信号传导的重要性,
人肠上皮细胞稳态。由于目前的人类疾病疗法正在设计中,
为了靶向Notch通路,了解该通路在肠道中的功能至关重要,
避免可能由该途径的系统性破坏引起的肠毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINDA C. SAMUELSON其他文献
LINDA C. SAMUELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINDA C. SAMUELSON', 18)}}的其他基金
2022 James W. Freston Conference: Gastrointestinal Organoids and Engineered Organ Systems
2022 年 James W. Freston 会议:胃肠类器官和工程器官系统
- 批准号:
10538834 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Wnt Pathway Regulation of Gastric Stem Cell Function
胃干细胞功能的 Wnt 通路调控
- 批准号:
10557120 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Wnt Pathway Regulation of Gastric Stem Cell Function
胃干细胞功能的 Wnt 通路调控
- 批准号:
10364859 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Intestinal Stem Cell Injury and Repair
肠干细胞损伤与修复机制
- 批准号:
10197914 - 财政年份:2018
- 资助金额:
$ 32.98万 - 项目类别:
Notch Pathway Regulation of Intestinal Epithelial Cell Homeostasis
肠上皮细胞稳态的Notch通路调节
- 批准号:
8915683 - 财政年份:2013
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7845837 - 财政年份:2009
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
8227976 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7596416 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
8050179 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7778875 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
相似国自然基金
Epac1/2通过蛋白酶体调控中性粒细胞NETosis和Apoptosis在急性肺损伤中的作用研究
- 批准号:LBY21H010001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Apoptosis/Ferroptosis双重激活效应的天然产物AlbiziabiosideA的抗肿瘤作用机制研究及其结构改造
- 批准号:81703335
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双肝移植后Apoptosis和pyroptosis在移植物萎缩差异中的作用和供受者免疫微环境变化研究
- 批准号:81670594
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Serp-2 调控apoptosis和pyroptosis 对肝脏缺血再灌注损伤的保护作用研究
- 批准号:81470791
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
- 批准号:81101529
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
放疗与细胞程序性死亡(APOPTOSIS)相关性及其应用研究
- 批准号:39500043
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Discovery Grants Program - Individual