Optimization and Simulation of Kidney Paired Donation Programs

肾脏配对捐献方案的优化与模拟

基本信息

  • 批准号:
    8462244
  • 负责人:
  • 金额:
    $ 32.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): An evolving strategy known as kidney paired donation (KPD) employs a technological solution to overcome the barriers faced by many patients with kidney failure who present with willing, but immunologically or blood type incompatible living donors. Kidney paired donation uses a computerized algorithm to match one incompatible donor/recipient pair to another pair with a complementary incompatibility, such that the donor of the first pair gives to the recipient of the second, and vice versa. We also consider more complex exchanges of organs involving three or more pairs. In addition, we allow for altruistic donors who donate a kidney voluntarily and thereby have the potential to create a chain of kidney transplants. A fundamental problem in managing a KPD program is selecting the "optimal" set of transplants from among the many mathematically possible alternative combinations that could be generated. The choice of an optimal allocation depends in part on the assigned utility of a specific transplant. We show that this choice should also depend on stochastic elements and define new and better methods for optimization. We will develop a data-based micro-simulation model of KPD program, and utilize that model to evaluate different allocation strategies, to compare the impact of these strategies on performance outcomes, and to assess effects of different utility assignments. In addition, we will develop a user-friendly version of these models to provide decision support to individuals charged with managing KPD programs. To accomplish these tasks, we propose the following specific aims: Aim 1: Develop optimization methods for selecting exchanges and chains in a KPD program that take account of utility and uncertainty, and to compare these new methods with those currently in use that are based solely on utility. This includes testing and refining these methods through their implementation in existing KPD programs. Aim 2: To develop a holistic approach to the modeling of all aspects of a KPD program using simulation methods based on multiple data sources, and the use of this micro simulation model to assess the effects of policy decisions and approaches on key performance measures of a KPD. Aim 3: To develop a user friendly interface to enable the use of the micro simulation model for decision support in active KPD programs.
描述(由申请人提供):一种称为肾脏配对捐赠(KPD)的不断发展的策略采用了一种技术解决方案,以克服许多肾衰竭患者所面临的障碍,这些患者与自愿但免疫或血型不相容的活体捐赠者一起出现。肾脏配对捐赠使用计算机化算法将一个不相容的供体/受体配对与另一对互补的不相容性匹配,使得第一对的供体给予第二对的受体,反之亦然。我们还考虑了涉及三对或更多对的更复杂的器官交换。此外,我们允许利他主义的捐赠者自愿捐赠肾脏,从而有可能创造一个肾脏移植链。管理KPD程序的一个基本问题是从可能生成的许多数学上可能的替代组合中选择“最佳”移植集。最佳分配的选择部分取决于特定移植的指定效用。我们表明,这种选择也应该取决于随机元素,并定义新的和更好的优化方法。我们将开发一个基于数据的KPD计划微观仿真模型,并利用该模型来评估不同的分配策略,比较这些策略对性能结果的影响,并评估不同的效用分配的效果。此外,我们将开发这些模型的用户友好版本,为负责管理KPD计划的个人提供决策支持。为了完成这些任务,我们提出了以下具体目标:目标1:开发优化方法,选择交易所和链的KPD计划,考虑到效用和不确定性,并比较这些新的方法与目前使用的那些完全基于效用。这包括通过在现有KPD计划中实施这些方法来测试和改进这些方法。目标二:为了开发一个整体的方法,使用基于多个数据源的模拟方法对KPD计划的各个方面进行建模,并使用这种微观模拟模型来评估政策决策和方法对KPD关键绩效指标的影响。目标3:开发一个用户友好的界面,使使用的微观模拟模型的决策支持在积极的KPD计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John D Kalbfleisch其他文献

John D Kalbfleisch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John D Kalbfleisch', 18)}}的其他基金

Optimization and Simulation of Kidney Paired Donation Programs
肾脏配对捐献方案的优化与模拟
  • 批准号:
    8304593
  • 财政年份:
    2012
  • 资助金额:
    $ 32.38万
  • 项目类别:
Optimization and Simulation of Kidney Paired Donation Programs
肾脏配对捐献方案的优化与模拟
  • 批准号:
    9906203
  • 财政年份:
    2012
  • 资助金额:
    $ 32.38万
  • 项目类别:
Optimization and Simulation of Kidney Paired Donation Programs
肾脏配对捐献方案的优化与模拟
  • 批准号:
    8639562
  • 财政年份:
    2012
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7886080
  • 财政年份:
    2009
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7465345
  • 财政年份:
    2006
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7640552
  • 财政年份:
    2006
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7123172
  • 财政年份:
    2006
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7254913
  • 财政年份:
    2006
  • 资助金额:
    $ 32.38万
  • 项目类别:
Biostatistics Training for Research in the Biosciences
生物科学研究生物统计学培训
  • 批准号:
    7878066
  • 财政年份:
    2006
  • 资助金额:
    $ 32.38万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了