ENTROPY-BASED TISSUE DISCRIMINATORS
基于熵的组织鉴别器
基本信息
- 批准号:8636638
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBackBase CompositionBayesian AnalysisCardiacClassificationClassification SchemeClinicalColorDataData SetDatabasesDetectionDevelopmentDiffuseDimensionsDiscriminationDiseaseEnsureEntropyEnvironmentEvaluationExpeditionsFatty LiverFibrosisFishesFoundationsFractalsFrequenciesHeartHistocompatibility TestingImageImage AnalysisIndividualInfarctionInjuryInvestigationIschemiaJointsKidneyKnowledgeLabelLiverMachine LearningMapsMeasuresMethodsMetricMicroscopicNormal tissue morphologyOrganOutcomePathologyPatternPharmaceutical PreparationsPhysiologicalPositioning AttributeProceduresProcessPropertyProstateRadioReportingResolutionRodentSchemeShapesSignal TransductionSpecificityStaining methodStainsStreamStructureTestingTimeTissue DifferentiationTissue ModelTissuesUltrasonic TransducerUltrasonicsUltrasonographyVisual CortexWorkattenuationbasecomputerized data processingdata reductiondesigndetectorheart motionindexingmeetingsn-dimensionalnovelpublic health relevanceradiofrequencysoundtissue processingvector
项目摘要
DESCRIPTION (provided by applicant): The major problem addressed in this proposal is the development and evaluation of an automated noninvasive approach to discriminate different normal and pathological tissue types using machine learning algorithms; previous applications of machine learning have been based on features of the backscattered ultrasound that are essentially energy based. Our approach will be based on extracting features from images whose pixels are determined by the entropy contained in segments of the backscattered ultrasound. The unique attributes of entropy imaging suggest that the automated analysis we propose would be particularly robust for discrimination of deep tissues in a clinical environment.
描述(由申请人提供):本提案中解决的主要问题是利用机器学习算法开发和评估自动非侵入性方法来区分不同的正常和病理组织类型;以前的机器学习应用一直基于本质上基于能量的背向散射超声的特征。我们的方法将基于从图像中提取特征,其像素由背向散射超声片段中包含的熵确定。熵成像的独特属性表明,我们提出的自动化分析将特别适用于临床环境中深层组织的区分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL Scott HUGHES其他文献
MICHAEL Scott HUGHES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL Scott HUGHES', 18)}}的其他基金
MONITORING DISEASE AND THERAPY IN DYSTROPHIN-DEFICIENT MUSCLE USING ULTRASOUND
使用超声波监测肌营养不良蛋白缺乏肌肉的疾病和治疗
- 批准号:
7851306 - 财政年份:2009
- 资助金额:
$ 22.8万 - 项目类别:
MONITORING DISEASE AND THERAPY IN DYSTROPHIN-DEFICIENT MUSCLE USING ULTRASOUND
使用超声波监测肌营养不良蛋白缺乏肌肉的疾病和治疗
- 批准号:
7364380 - 财政年份:2009
- 资助金额:
$ 22.8万 - 项目类别:
Specific Tissue Targeted Ultrasonic Contrast Agent
特定组织靶向超声造影剂
- 批准号:
6796298 - 财政年份:1997
- 资助金额:
$ 22.8万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant














{{item.name}}会员




