Catalytic Domain Dynamics in Protein Kinases
蛋白激酶的催化域动力学
基本信息
- 批准号:8373896
- 负责人:
- 金额:$ 31.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-01 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AP23464Active SitesAffinityBiological AssayCatalytic DomainCell NucleusCellsCharacteristicsChemicalsChickensCoupledCouplingDUSP6 proteinDataDevelopmentDiseaseDockingEconomicsElementsEnzymesEukaryotaExtracellular DomainFamilyFamily StudyGenerationsGoalsHumanImatinibImmune System DiseasesIn VitroIntentionInterventionIsotope LabelingIsotopesLabelLeadLengthMAPK1 geneMalignant NeoplasmsMeasurementMethodologyMethodsMitogen-Activated Protein KinasesMitogensModificationMolecular ChaperonesNuclear Magnetic ResonancePathway interactionsPeptidesPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPlayProcessProtein KinaseProtein Tyrosine KinaseProtein-Serine-Threonine KinasesProteinsProtocols documentationRattusRegulationRegulatory ElementRelaxationResidual stateRoleSRC geneSamplingSerineSignal PathwaySignal TransductionSignaling MoleculeSolutionsStable Isotope LabelingStructureSystemTechniquesTestingTherapeutic AgentsThreonineTimeTyrosineWorkcancer therapycell growthcell motilitycryogenicsdesignimprovedinhibitor/antagonistinorganic phosphateinsightinstrumentationkinase inhibitormembermolecular dynamicsmutantnon-receptor type 7 protein-tyrosine phosphatasenovelnovel strategiesnovel therapeuticsprotein foldingpurvalanol Asmall moleculesrc-Family Kinasestherapeutic target
项目摘要
Progression of a host of human cancers is associated with elevated levels of expression and catalytic
activity of the Src family of tyrosine kinases (SFKs) making them key therapeutic targets. Even with the
availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain, a complete
understanding of its catalytic regulation is unavailable. A central step recognized to lead to a dramatic increase
in catalytic activity is the phosphorylation of a regulatory tyrosine residue (Tyract) in the "activation loop". This
chemical modification is presumed to cause changes in local and long-range interactions and modification of
the regulatory dynamics within the catalytic domain. Though some of these changes are inferred from crystal
structures, direct evidence is lacking. Solution NMR, the biophysical method best suited to tackle this problem,
was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble,
properly folded protein for economically viable labeling with NMR-active isotopes. We have through a choice of
optimal constructs, co-expression with chaperones and optimization of the purification protocol, achieved the
ability to bacterially produce large quantities of the isotopically-labeled catalytic domain of c-Src, the
prototypical SFK, and of its Tyract phosphorylated form. This, together with the availability of ultra-high field
NMR instrumentation (900 MHz) equipped with the latest generation cryogenic probes and the high-quality of
the initial NMR spectra, make the detailed NMR studies of the catalytic domain of the SFKs viable for the first
time. We will utilize novel NMR methodology to fully characterize the dynamics of the c-Src catalytic domain,
their modifications upon Tyract phosphorylation, their influence on the regulation of enzymatic activity and the
mechanism of their perturbation by each of three specific classes of small molecule inhibitors.
The SFKs use additional non-catalytic domains to modulate catalytic activity while other protein kinases
such as the extracellular signal-regulated kinase (ERK) class of serine/threonine kinases use insertions within
the catalytic domain itself in lieu of external domains. Notably, the overall structure and key regulatory
elements of the catalytic domain are highly conserved amongst protein kinases. It is thus expected that certain
modes of functional dynamics would be conserved while others would vary depending on the class of kinase.
We will investigate these effects by ascertaining the functional dynamics in ERK2 (a prototypical ERK), their
modification upon dual-phosphorylation of a positive-regulatory activation-loop Thr-X-Tyr motif, for comparison
with c-Src. We will also investigate the modifying effects of docking interactions (currently unidentified in SFKs)
with regulatory phosphatases, on the functional dynamics in ERK2.
Understanding the dynamic underpinnings of kinase activation will likely permit the improvement of
current, and the development of new, therapeutic agents for intervention in kinase-associated disorders,
especially in cancer and auto-immune diseases.
许多人类癌症的进展与表达和催化水平升高有关
酪氨酸激酶(SFK)的Src家族的活性使其成为关键的治疗靶标。即使
活性和非活性形式的SFK催化结构域的多种晶体结构的可用性,
对其催化调节的理解是不可用的。公认的导致大幅度增加的核心步骤
在催化活性中,最重要的是"活化环"中调节性酪氨酸残基(Tyract)的磷酸化。这
化学改性被认为会引起局部和远程相互作用的变化,
催化领域内的调节动力学。虽然其中一些变化是从晶体中推断出来的,
结构,缺乏直接证据。溶液核磁共振,最适合解决这个问题的生物物理方法,
以前由于细菌表达和纯化足量可溶性,
适当折叠的蛋白质,用于用NMR活性同位素进行经济上可行的标记。我们通过选择
优化的构建体,与分子伴侣的共表达和纯化方案的优化,实现了
细菌产生大量同位素标记的c-Src催化结构域的能力,
原型SFK及其Tyract磷酸化形式。这一点,再加上超高场的可用性
NMR仪器(900 MHz)配备最新一代低温探头和高质量的
最初的NMR光谱,使详细的NMR研究的催化结构域的SFKs可行的第一
时间我们将利用新的NMR方法来充分表征c-Src催化结构域的动力学,
它们对Tyract磷酸化的修饰,它们对酶活性调节的影响,
三种特定类型的小分子抑制剂对它们的干扰机制。
SFK使用额外的非催化结构域来调节催化活性,而其他蛋白激酶
例如细胞外信号调节激酶(ERK)类的丝氨酸/苏氨酸激酶
催化域本身代替外部域。值得注意的是,整体结构和关键监管
催化结构域的元件在蛋白激酶中是高度保守的。因此,预计某些
功能动力学的模式将是保守的,而其他模式将根据激酶的类别而变化。
我们将通过确定ERK 2(一种典型的ERK)的功能动力学,
在正调节激活环Thr-X-Tyr基序的双重磷酸化后的修饰,用于比较
关于C-Src我们还将研究对接相互作用(目前在SFK中未确定)的修饰效应。
与调节磷酸酶,在ERK 2的功能动力学。
了解激酶激活的动态基础将可能允许改善
用于干预激酶相关病症的新治疗剂的当前和开发,
特别是在癌症和自身免疫疾病中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANAJEET GHOSE其他文献
RANAJEET GHOSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANAJEET GHOSE', 18)}}的其他基金
Interactions between Bacterial Tyrosine Kinases and Phosphatases
细菌酪氨酸激酶和磷酸酶之间的相互作用
- 批准号:
8541689 - 财政年份:2012
- 资助金额:
$ 31.34万 - 项目类别:
Interactions between Bacterial Tyrosine Kinases and Phosphatases
细菌酪氨酸激酶和磷酸酶之间的相互作用
- 批准号:
8359274 - 财政年份:2012
- 资助金额:
$ 31.34万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 31.34万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 31.34万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 31.34万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 31.34万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 31.34万 - 项目类别:
Discovery Grants Program - Individual