Structural Biology of the S. elongatus Circadian Clock

S. elongatus 昼夜节律钟的结构生物学

基本信息

  • 批准号:
    8450065
  • 负责人:
  • 金额:
    $ 31.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Many biological processes undergo daily (circadian) rhythms that are dictated by self-sustained biochemical oscillators. These circadian clock systems generate a precise ~24 h period in constant conditions (constant light and temperature) that is nearly invariant at different temperatures (temperature compensation). Circadian clocks also show entrainment to day and night, predominantly mediated by the daily light/dark cycle, so that the endogenous biological clock is phased appropriately to the environmental cycle. These properties - especially the period's long time constant and temperature compensation - are difficult to explain biochemically. Full understanding of these unusual oscillators will require knowledge of the structures, functions, and interactions of their molecular components. Mammalian clocks are exceedingly complex and require several interconnecting transcriptional, translational and post-translational feedback loops (TTFLs) to achieve gene expression with circadian periodicity. We study the components of the biological clock in the prokaryotic cyanobacterium, Synechococcus elongatus, which programs many processes to conform optimally to the daily cycle, including photosynthesis, nitrogen fixation, and gene expression. The endogenous circadian system in cyanobacteria exerts pervasive control over cellular processes including global gene expression. Indeed, the entire chromosome undergoes daily cycles of topological changes and compaction. Remarkably, the biochemical machinery underlying this circadian oscillator can be reconstituted in vitro with just three cyanobacterial proteins, KaiA, KaiB, and KaiC in the presence of ATP! These proteins interact to promote conformational changes and phosphorylation events that determine the phase of the in vitro oscillation. The high-resolution structures of these proteins suggest a racheting mechanism by which the KaiABC oscillator ticks unidirectionally. This post-translational oscillator may interact with a TTFL to generate the emergent circadian behavior in vivo. The conjunction of rigorous structural, biophysical, and biochemical approaches to this system will reveal molecular mechanisms of biological timekeeping. The KaiC homo- hexamer forms the central cog of the clock and is an auto-kinase and -phosphatase and an ATPase. The KaiA dimer enhances KaiC phosphorylation and KaiB dimers antagonize KaiA's action. We will dissect the mechanism of the KaiABC clock using hybrid structural techniques, including X-ray crystallography, electron microscopy (EM), small angle X-ray and neutron scattering (SAXS and SANS, respectively), a range of biophysical and biochemical approaches as well as functional assays in vivo and in vitro. The three specific aims are (1) Structure and function of phosphorylation site (P-site), phosphorylation loop and putative phosphatase active-site mutant KaiC proteins; (2) Structure determinations of KaiAC, KaiBC and KaiABC complexes using both wt and P-site mutant KaiCs for optimization of protein-protein interactions; and (3) Determination of the molecular origins of the clock's temperature compensation.
描述(由申请人提供):许多生物过程经历由自我维持的生化振荡器决定的每日(昼夜)节律。这些生物钟系统在恒定的条件下(恒定的光和温度)产生精确的~24小时周期,在不同的温度下几乎不变(温度补偿)。生物钟也显示出昼夜的影响,主要由每日的光/暗周期介导,因此内源性生物钟与环境周期相适应。这些特性——尤其是周期的长时间常数和温度补偿——很难用生物化学的方法来解释。充分了解这些不寻常的振荡器将需要了解其分子成分的结构,功能和相互作用。哺乳动物的生物钟极其复杂,需要多个相互连接的转录、翻译和翻译后反馈回路(TTFLs)来实现具有昼夜周期的基因表达。我们研究了原核蓝藻——长聚球菌(Synechococcus elongatus)生物钟的组成部分,它对包括光合作用、固氮和基因表达在内的许多过程进行了优化,以符合日常循环。蓝藻的内源性昼夜节律系统对包括全球基因表达在内的细胞过程具有普遍的控制。事实上,整个染色体每天都在经历拓扑变化和压缩的循环。值得注意的是,这种昼夜节律振荡器背后的生化机制可以在体外用三种蓝藻蛋白(KaiA, KaiB和KaiC)在ATP的存在下重建!这些蛋白相互作用促进构象变化和磷酸化事件,从而决定体外振荡的阶段。这些蛋白质的高分辨率结构表明,KaiABC振荡器存在一种单向摆动机制。这种翻译后振荡器可能与TTFL相互作用,在体内产生紧急的昼夜节律行为。结合严谨的结构、生物物理和生物化学方法来研究这个系统,将揭示生物计时的分子机制。KaiC同属六聚体构成生物钟的中心齿轮,是一种自激酶和-磷酸酶以及三磷酸腺苷酶。KaiA二聚体增强KaiA磷酸化,KaiB二聚体拮抗KaiA的作用。我们将使用混合结构技术,包括x射线晶体学,电子显微镜(EM),小角度x射线和中子散射(分别为SAXS和SANS),一系列生物物理和生化方法以及体内和体外功能分析来剖析KaiABC时钟的机制。三个具体目标是:(1)磷酸化位点(p位点)、磷酸化环和推定的磷酸酶活性位点突变KaiC蛋白的结构和功能;(2)利用wt和p位点突变型KaiCs对KaiAC、KaiBC和KaiABC复合物进行结构测定,优化蛋白-蛋白相互作用;(3)确定时钟温度补偿的分子起源。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein-Protein Interactions in the Cyanobacterial Circadian Clock: Structure of KaiA Dimer in Complex with C-Terminal KaiC Peptides at 2.8 Å Resolution.
  • DOI:
    10.1021/acs.biochem.5b00694
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    R. Pattanayek;M. Egli
  • 通讯作者:
    R. Pattanayek;M. Egli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN EGLI其他文献

MARTIN EGLI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN EGLI', 18)}}的其他基金

Structure and Function of P450 Enzymes in Steroid Hormone Biosynthesis
类固醇激素生物合成中 P450 酶的结构和功能
  • 批准号:
    8915718
  • 财政年份:
    2013
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structure and Function of P450 Enzymes in Steroid Hormone Biosynthesis
类固醇激素生物合成中 P450 酶的结构和功能
  • 批准号:
    8575387
  • 财政年份:
    2013
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structure and Function of P450 Enzymes in Steroid Hormone Biosynthesis
类固醇激素生物合成中 P450 酶的结构和功能
  • 批准号:
    8740504
  • 财政年份:
    2013
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structure and Function of P450 Enzymes in Steroid Hormone Biosynthesis
类固醇激素生物合成中 P450 酶的结构和功能
  • 批准号:
    9130194
  • 财政年份:
    2013
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structure of Circadian Clock Complexes from Cyanobacteria by Three Dimensional EM
通过三维电镜研究蓝藻生物钟复合物的结构
  • 批准号:
    7924201
  • 财政年份:
    2009
  • 资助金额:
    $ 31.6万
  • 项目类别:
SAXS DATA COLLECTION: CYANOBACTERIAL KAI ABC CIRCADIAN CLOCK
SAXS 数据收集:蓝细菌 Kai ABC 昼夜节律时钟
  • 批准号:
    7601751
  • 财政年份:
    2007
  • 资助金额:
    $ 31.6万
  • 项目类别:
SMALL ANGLE X-RAY SCATTERING OF CIRCADIAN CLOCK PROTEIN COMPLEX
生物钟蛋白质复合物的小角 X 射线散射
  • 批准号:
    7369164
  • 财政年份:
    2006
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structural Biology of the S. elongatus Circadian Clock
S. elongatus 昼夜节律钟的结构生物学
  • 批准号:
    7591719
  • 财政年份:
    2006
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structural Biology of the S. elongatus Circadian Clock
S. elongatus 昼夜节律钟的结构生物学
  • 批准号:
    8073572
  • 财政年份:
    2006
  • 资助金额:
    $ 31.6万
  • 项目类别:
Structural Biology of the S. elongatus Circadian Clock
S. elongatus 昼夜节律钟的结构生物学
  • 批准号:
    8249840
  • 财政年份:
    2006
  • 资助金额:
    $ 31.6万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了