3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema

3D 图像分析方法确定视神经水肿的严重程度和原因

基本信息

  • 批准号:
    8477880
  • 负责人:
  • 金额:
    $ 33.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Currently, the clinical assessment of optic nerve swelling is limited by the subjective ophthalmoscopic evaluation by experts in order to diagnose and differentiate the cause of the optic disc edema. The long-term goal of our research effort is to develop automated 3D image-analysis approaches for the identification of an optimal set of 3D parameters to quantify the severity of optic nerve edema over time and to help differentiate the underlying cause. The overall objective in this application is to develop strategies, using spectral-domain optical coherence tomography (SD-OCT), to rapidly and accurately determine the severity of optic nerve swelling in patients diagnosed with papilledema and to ascertain morphological features that differentiate papilledema from other disorders causing optic nerve edema. The central hypothesis is that information about volumetric and shape parameters obtainable from 3D image analysis techniques will improve the ability to accurately assess the severity and cause of optic disc edema over the existing subjective ophthalmoscopic assessment of optic nerve swelling using the Fris¿n scale or current 2D OCT parameters. The rationale for the proposed research is that having such 3D parameters will dramatically improve the way optic disc swelling is assessed. The following specific aims will be pursued: 1. Develop and evaluate the methodology for computing novel volumetric and shape parameters of a swollen optic nerve head from SD-OCT. This will be completed by refining and evaluating our novel 3D graph-based segmentation algorithms in SD-OCT volumes of patients with optic disc swelling. 2. Identify SD-OCT parameters that optimally correlate with clinical measurements of severity in patients with papilledema and develop a continuous severity scale. This will be accomplished by using machine-learning approaches to relate SD-OCT parameters to expert-defined Fris¿n scale grades (a fundus-based measure of severity). It is anticipated that volumetric 3D parameters will more closely correlate with clinical measures than 2D parameters and will provide a continuous severity scale. 3. Identify SD-OCT parameters that differentiate papilledema from other causes of optic disc swelling (or apparent optic disc swelling, as in pseudopapilledema) and develop a corresponding predictive classifier. Our working hypothesis is that 3D shape parameters, especially those near Bruch's membrane opening, will contribute the most in the automatic differentiation process. The approach is innovative because the 3D image-analysis methodology developed by the applicants enables novel determination of 3D volumetric and shape parameters and represents a significant improvement over the status quo of using qualitative image information and 2D OCT image information for assessing optic disc swelling. The proposed research is significant because it will help to establish a much-needed alternative and more objective method by which to assess the severity and cause of optic disc swelling.
描述(由申请方提供):目前,视神经肿胀的临床评估受到专家主观检眼镜评价的限制,以诊断和区分视盘水肿的原因。我们研究工作的长期目标是开发自动化3D图像分析方法,用于识别最佳3D参数集,以量化视神经水肿随时间的严重程度,并帮助区分根本原因。本申请的总体目标是开发使用谱域光学相干断层扫描(SD-OCT)的策略,以快速准确地确定诊断为视神经乳头水肿的患者的视神经肿胀的严重程度,并确定将视神经乳头水肿与其他引起视神经水肿的疾病区分开的形态学特征。中心假设是,通过3D图像分析技术获得的关于体积和形状参数的信息将提高准确评估视盘水肿的严重程度和原因的能力,而不是使用Frisn量表或当前2D OCT参数对视神经肿胀进行现有的主观检眼镜评估。这项研究的基本原理是,拥有这样的3D参数将大大改善视盘肿胀的评估方式。具体目标如下:1.开发和评估用于计算SD-OCT中肿胀视神经乳头的新体积和形状参数的方法。这将通过改进和评估我们在视盘肿胀患者的SD-OCT体积中的新型3D基于图形的分割算法来完成。2.确定与视神经乳头水肿患者严重程度临床测量最佳相关的SD-OCT参数,并制定连续的严重程度量表。这将通过使用机器学习方法将SD-OCT参数与专家定义的Frisn量表等级(基于眼底的严重程度测量)相关联来实现。预计体积3D参数将比2D参数更密切地与临床测量相关,并将提供连续的严重程度量表。3.识别将视乳头水肿与其他视盘肿胀原因(或明显视盘肿胀,如假性视乳头水肿)区分开的SD-OCT参数,并开发相应的预测分类器。我们的工作假设是,3D形状参数,特别是那些附近的布鲁赫膜开口,将有助于在自动分化过程中。该方法是创新的,因为申请人开发的3D图像分析方法能够新颖地确定3D体积和形状参数,并且代表了对使用定性图像信息和2D OCT图像信息来评估视盘肿胀的现状的显著改进。这项研究意义重大,因为它将有助于建立一种急需的替代方法和更客观的方法来评估视盘肿胀的严重程度和原因。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MONA K. GARVIN其他文献

MONA K. GARVIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MONA K. GARVIN', 18)}}的其他基金

Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10424899
  • 财政年份:
    2022
  • 资助金额:
    $ 33.98万
  • 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10623178
  • 财政年份:
    2022
  • 资助金额:
    $ 33.98万
  • 项目类别:
IEEE International Symposium on Biomedical Imaging (ISBI) 2020
IEEE 国际生物医学成像研讨会 (ISBI) 2020
  • 批准号:
    9914410
  • 财政年份:
    2020
  • 资助金额:
    $ 33.98万
  • 项目类别:
Automated Assessment of Optic Nerve Edema with Low-Cost Imaging
通过低成本成像自动评估视神经水肿
  • 批准号:
    9569310
  • 财政年份:
    2016
  • 资助金额:
    $ 33.98万
  • 项目类别:
3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema
3D 图像分析方法确定视神经水肿的严重程度和原因
  • 批准号:
    8842639
  • 财政年份:
    2013
  • 资助金额:
    $ 33.98万
  • 项目类别:
3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema
3D 图像分析方法确定视神经水肿的严重程度和原因
  • 批准号:
    8652462
  • 财政年份:
    2013
  • 资助金额:
    $ 33.98万
  • 项目类别:
Glaucoma Assessment Using A Multimodality Image Analysis Approach
使用多模态图像分析方法进行青光眼评估
  • 批准号:
    8425995
  • 财政年份:
    2012
  • 资助金额:
    $ 33.98万
  • 项目类别:
Glaucoma Assessment Using A Multimodality Image Analysis Approach
使用多模态图像分析方法进行青光眼评估
  • 批准号:
    8838199
  • 财政年份:
    2012
  • 资助金额:
    $ 33.98万
  • 项目类别:
Glaucoma Assessment Using A Multimodality Image Analysis Approach
使用多模态图像分析方法进行青光眼评估
  • 批准号:
    8202660
  • 财政年份:
    2012
  • 资助金额:
    $ 33.98万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了