Hepatic zonation in a microfluidic liver model: application to drug metabolism
微流体肝脏模型中的肝分区:在药物代谢中的应用
基本信息
- 批准号:8526649
- 负责人:
- 金额:$ 5.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcetaminophenAcinus organ componentAffectAlbuminsAnimal ModelAnimalsBile AcidsCarbohydratesCell Culture TechniquesCell SurvivalCellsCellular MorphologyChemical AgentsChemicalsClinicalComputer SimulationConsumptionCytochrome P450DevelopmentDrug toxicityEthanolFailureFibrinogenFluoresceinGlucagonGlutathioneGoalsGoldHepaticHepatocyteHepatotoxicityHeterogeneityHormonesHumanIn VitroInsulinKetoconazoleLeadLengthLiquid substanceLiverMetabolicMetabolic BiotransformationMetabolismMethodsMicrofabricationMicrofluidicsModelingMorphologyNutrientOrganOutcomeOutputPharmaceutical PreparationsPharmacologic SubstancePhasePhase I Clinical TrialsPhosphoenolpyruvate CarboxylasePhysiologicalPhysiologyPreclinical Drug EvaluationResourcesRifampinSystemTaurine CholateTechnologyTestingTimeToxic effectUreaWorkXenobioticsbasedesigndosagedrug discoverydrug metabolismhigh throughput analysisin vivoin vivo Modelnovelperoxidationpre-clinicalpublic health relevanceresponsescreeninguptake
项目摘要
DESCRIPTION (provided by applicant): Hepatotoxicity of new drugs, which is often unpredictable in the preclinical phase of drug discovery, causes failure of 50% of pharmaceuticals that make it to Phase I clinical trials, resulting in ~2-6yr loss in time and ~$15 million in resources per drug. Current in vitro drug screening platforms typically do not consider zonation in hepatocyte metabolism, which is critical for accurate modeling of in vivo function as biotransformation occurs to different extents in different zones, affecting hepatotoxicity. Although many metabolic zonal inducers have been studied, most notably O2, we still lack a systematic understanding of what concentration and concentration gradients of the chemical inducers lead to physiological zonation. Our long-term goal is to create a physiologically relevant, high-throughput system for predictive in vitro drug-screening. Our objective is to develop a systematic understanding of how concentration gradients in chemical agents induce hepatic metabolic zonation and incorporate this understanding into a high-throughput microfluidic screening platform for rapid drug toxicity screening. The central hypothesis is that dynamic zonation of hepatocyte metabolism can be generated using concentration gradients in zonation induction agents (O2, hormones, bile acids, and ethanol) to direct the development of morphologically and metabolically distinct zones within a microfluidic hepatocyte cell culture to elucidate xenobiotic hepatotoxicity. The rationale for this proposal is that current microfabrication technology allows the use of microfluidics to create more physiological liver models that incorporate hepatocyte heterogeneity. Furthermore, such microfluidic platforms can be multiplexed for high- throughput analysis, allowing precisely controlled and efficient drug screening. Aim 1: Design and fabricate a multiplexed microfluidic platform for hepatocyte culture to systematically determine the concentration effects of zonation inducers on cell metabolism. Aim 2: Create a microfluidic platform to assess the effects of concentration gradients of single and multiple zonation induction agents on hepatocyte dynamic metabolism. Aim 3: Create hepatocyte metabolic zonation in the flow-direction via cellular consumption, mimicking liver physiology, and test the hepatotoxicity of various drugs in long-term culture. The successful outcome of these aims will provide novel in vitro microfluidic culture systems capable of reproducing zonal hepatocyte morphology and metabolism. We expect to elucidate the connection between gradients of zonal inducers along the acinus and hepatocyte dynamic metabolic responses, and to correlate metabolic response to drug metabolism and toxicity. The broader impact of the studies will be the development of a predictive, high- throughput in vitro drug-screening platform to replace poorly predictive animal models.
描述(由申请人提供):新药的肝毒性在药物发现的临床前阶段通常是不可预测的,导致50%的药物进入I期临床试验失败,导致每种药物约2- 6年的时间损失和约1500万美元的资源损失。目前的体外药物筛选平台通常不考虑肝细胞代谢中的分区,这对于体内功能的准确建模至关重要,因为生物转化在不同区域中发生不同程度,影响肝毒性。虽然许多代谢地带性诱导剂已被研究,最显着的O2,我们仍然缺乏一个系统的了解什么浓度和浓度梯度的化学诱导剂导致生理地带性。我们的长期目标是建立一个生理相关的,高通量的预测体外药物筛选系统。我们的目标是发展一个系统的理解,如何在化学试剂的浓度梯度诱导肝脏代谢分区,并将这种理解到一个高通量的微流体筛选平台,快速药物毒性筛选。中心假设是,可以使用分区诱导剂(O2、激素、胆汁酸和乙醇)的浓度梯度来产生肝细胞代谢的动态分区,以指导微流控肝细胞培养物内形态和代谢不同区域的发育,以阐明外源性肝毒性。该提议的基本原理是,当前的微制造技术允许使用微流体来创建包含肝细胞异质性的更生理的肝脏模型。此外,这样的微流体平台可以多路复用用于高通量分析,允许精确控制和有效的药物筛选。目标1:设计并制作了一个用于肝细胞培养的多路微流控平台,以系统地测定带状化诱导剂对细胞代谢的浓度效应。目标二:建立一个微流控平台,以评估单一和多个分区诱导剂的浓度梯度对肝细胞动态代谢的影响。目标三:通过细胞消耗在流动方向上创建肝细胞代谢分区,模拟肝脏生理学,并在长期培养中测试各种药物的肝毒性。这些目标的成功结果将提供能够再现带状肝细胞形态和代谢的新型体外微流体培养系统。我们期望阐明沿着腺泡的带状诱导物梯度和肝细胞动态代谢反应之间的联系,并将代谢反应与药物代谢和毒性相关联。这些研究的更广泛影响将是开发一种预测性、高通量的体外药物筛选平台,以取代预测性差的动物模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Joseph McCarty其他文献
William Joseph McCarty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Joseph McCarty', 18)}}的其他基金
Hepatic zonation in a microfluidic liver model: application to drug metabolism
微流体肝脏模型中的肝分区:在药物代谢中的应用
- 批准号:
8655454 - 财政年份:2013
- 资助金额:
$ 5.16万 - 项目类别:
Joint Capsule Biomechanics and Transport in Rat Models of Aging and Disease
衰老和疾病大鼠模型中关节囊的生物力学和运输
- 批准号:
8126899 - 财政年份:2011
- 资助金额:
$ 5.16万 - 项目类别:
Joint Capsule Biomechanics and Transport in Rat Models of Aging and Disease
衰老和疾病大鼠模型中关节囊的生物力学和运输
- 批准号:
8267251 - 财政年份:2011
- 资助金额:
$ 5.16万 - 项目类别: