Uncovering the transcription factor networks in early human cell specification
揭示早期人类细胞规范中的转录因子网络
基本信息
- 批准号:8526759
- 负责人:
- 金额:$ 5.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAutomobile DrivingBindingBiological ModelsBiologyCardiac MyocytesCell Differentiation processCell Fate ControlCellsChromatinCommunitiesComputer SimulationDNADNA MethylationDataDerivation procedureDevelopmentDevelopmental BiologyDiseaseEctodermElementsEndodermEngineeringEpiblastEpigenetic ProcessEventExhibitsFibroblastsGene ExpressionGenerationsGenetic TranscriptionGerm LayersHumanHuman DevelopmentHuman bodyImProvIn VitroInsulin-Dependent Diabetes MellitusInvestmentsIslets of LangerhansMapsMeasurementMediatingMemoryMesodermMethodsModelingMolecularMusNeuronsOrganParkinson DiseasePathway interactionsPlayPostdoctoral FellowPropertyProteinsProtocols documentationRNA InterferenceRegenerative MedicineRegulationResearchResourcesRoleSensitivity and SpecificitySignal TransductionSignaling ProteinSmall Interfering RNASpinal cord injurySystemTestingTherapeuticTimeTissue EngineeringTissuesbasecell typecofactorcombatcombinatorialepigenomefightinggastrulationgenome-widehistone modificationhuman embryonic stem cellimprovedinduced pluripotent stem cellinsightloss of functionnetwork modelsprogramspublic health relevanceresearch studyscreeningsmall hairpin RNAstem cell differentiationtranscription factor
项目摘要
DESCRIPTION (provided by applicant): Uncovering the transcription factor networks in early human cell specification. During gastrulation, pluripotent epiblast cells give rise to the three germ layers-- endoderm, mesoderm, and ectoderm. Later in development, these layers form nearly all the different tissues and organs in our body. However the molecular mechanisms that establish the transition from epiblast to the three germ layers are still largely unknown. A class of proteins known as transcription factors (TFs) can bind specific DNA elements and activate or repress gene expression. The capacity of TFs to "de-differentiate" fibroblast cells to induced pluripotent stem cells (1, 2) or to directly program cells into various lineages (3) makes them likely candidates for regulating cellular transitions during development. To gain a deeper understanding of the regulatory events that guide early human cell specification, a more comprehensive study of TF binding and their dynamics is needed. Current research on TFs in development mainly focuses on the regulatory role of single factors in steady state conditions, yet many TFs mediate gene expression downstream of signaling cascades in a dynamic and cooperative fashion that is unique to each cell type (4, 5). During my postdoctoral studies I aim to uncover the molecular events underling cellular specification. First, I will determine the genome-wide dynamics of over 30 TFs, DNA methylation, chromatin marks, and RNA expression at multiple decision time-points, during differentiation of human embryonic stem (ES) cells into endoderm, mesoderm, and ectoderm. Such comprehensive maps of TF binding dynamics will allow me to dissect the combinatorial and temporal interactions between master regulators, cofactors, and signaling proteins that establish cell identity. Second, I will combine these dynamic measurements to generate a provisional model of the network that controls cell identity in the different germ layers and dissect the interplay between TF occupancy and epigenetic state in the regulation of development. Third, I will validate and reiterate my multi-dimensional model predictions using selected RNAi perturbations of critical TFs in the network. The combination of this data will allow me to uncover the principles and players that establish cell fate. The proposed research will greatly enhance our understanding of regulatory circuits and their roles during cell differentiation in early human development, which will, in turn, improv our ability to derive therapeutic approaches, such as in vitro generation of cardiomyocytes, pancreatic islets, and neurons. This promises to have significant impact in combating number of diseases, such as spinal cord injury, juvenile diabetes, and Parkinson's disease.
描述(由申请人提供):揭示早期人类细胞特化中的转录因子网络。 在原肠胚形成期间,多能性外胚层细胞产生三个胚层--内胚层、中胚层和外胚层。在发育后期,这些层形成了我们身体中几乎所有不同的组织和器官。然而,建立从外胚层到三个胚层的过渡的分子机制在很大程度上仍然未知。一类被称为转录因子(TF)的蛋白质可以结合特定的DNA元件并激活或抑制基因表达。TF将成纤维细胞“去分化”为诱导的多能干细胞(1,2)或将细胞直接编程为各种谱系(3)的能力使其成为在发育期间调节细胞转变的可能候选者。 为了更深入地了解指导早期人类细胞特化的调控事件,需要对TF结合及其动力学进行更全面的研究。目前对TF在发育中的研究主要集中在稳态条件下单一因子的调节作用,但许多TF以动态和合作的方式介导信号级联下游的基因表达,这是每种细胞类型所独有的(4,5)。在我的博士后研究期间,我的目标是揭示细胞特化背后的分子事件。首先,我将确定超过30个TF,DNA甲基化,染色质标记和RNA表达在多个决策时间点,在人类胚胎干细胞(ES)分化为内胚层,中胚层和外胚层的全基因组动态。这种全面的TF结合动力学图谱将使我能够剖析建立细胞身份的主调节因子、辅因子和信号蛋白之间的组合和时间相互作用。其次,我将结合联合收割机这些动态测量,以产生一个临时模型的网络,控制细胞的身份在不同的胚层和解剖TF占用和表观遗传状态之间的相互作用,在调节发展。第三,我将使用网络中关键TF的选定RNAi扰动来验证和重申我的多维模型预测。这些数据的结合将使我能够揭示建立细胞命运的原则和参与者。 拟议的研究将大大提高我们对调控电路及其在人类早期发育细胞分化过程中的作用的理解,这反过来将提高我们获得治疗方法的能力,例如体外产生心肌细胞,胰岛和神经元。这有望对防治脊髓损伤、青少年糖尿病和帕金森病等多种疾病产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Minchev Tsankov其他文献
Alexander Minchev Tsankov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Minchev Tsankov', 18)}}的其他基金
Comparative, single-cell analysis of COVID-19 and other respiratory diseases
COVID-19 和其他呼吸道疾病的比较单细胞分析
- 批准号:
10361031 - 财政年份:2022
- 资助金额:
$ 5.49万 - 项目类别:
Comparative, single-cell analysis of COVID-19 and other respiratory diseases
COVID-19 和其他呼吸道疾病的比较单细胞分析
- 批准号:
10549811 - 财政年份:2022
- 资助金额:
$ 5.49万 - 项目类别:
Decoding the cellular mechanisms of COVID-19 severe disease susceptibility in patients with chronic respiratory disease
解读慢性呼吸道疾病患者COVID-19重症易感性的细胞机制
- 批准号:
10185342 - 财政年份:2021
- 资助金额:
$ 5.49万 - 项目类别:
Single-cell analysis of the lung immune microenvironment and cell-cell interactions across healthy and diseased patients
对健康和患病患者的肺部免疫微环境和细胞间相互作用的单细胞分析
- 批准号:
10293348 - 财政年份:2021
- 资助金额:
$ 5.49万 - 项目类别:
Single-cell analysis of the lung immune microenvironment and cell-cell interactions across healthy and diseased patients
对健康和患病患者的肺部免疫微环境和细胞间相互作用的单细胞分析
- 批准号:
10472702 - 财政年份:2021
- 资助金额:
$ 5.49万 - 项目类别:
Uncovering the transcription factor networks in early human cell specification
揭示早期人类细胞规范中的转录因子网络
- 批准号:
8625642 - 财政年份:2013
- 资助金额:
$ 5.49万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 5.49万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 5.49万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 5.49万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 5.49万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 5.49万 - 项目类别:














{{item.name}}会员




