High-performance compute cluster for biomedical computing
用于生物医学计算的高性能计算集群
基本信息
- 批准号:8334997
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBindingBioinformaticsBiologicalBiomedical ComputingBiomedical ResearchBudgetsCommunitiesComputational BiologyComputersConsumptionDNADNA-Binding ProteinsDataData AnalysesData SetDissectionEnvironmentEquipmentFacultyFundingFutureGenomeGliomaGrantHigh Performance ComputingHourInvestigationInvestmentsLymphomaMesenchymalMethodologyMissionNatureNew YorkPerformancePhenotypeProcessRecruitment ActivityResearchResearch InfrastructureResearch PersonnelRoleRunningShapesSoftware ToolsSpecificitySystemSystems BiologyTitanUnited States National Institutes of HealthUniversitiesbasecombinatorialgene discoverygene interactionmalignant phenotypemelanomanovelprogramssuccess
项目摘要
DESCRIPTION (provided by applicant): The Center for Computational Biology and Bioinformatics (C2B2) was established in 2003, with the mission of providing the biomedical research community with Structural and Systems Biology algorithms and software tools for the dissection of molecular interactions and for the interaction-based elucidation of cellular phenotypes. Over the last few years C2B2 investigators have developed many novel analysis methodologies which have led to important biological discoveries including understanding the role of DNA shape in protein- DNA binding specificity and the discovery of genes causally related to the presentation of malignant phenotypes, including Lymphoma, Glioma, and Melanoma. A common thread among all these computational investigations is their very significant computational requirements. This is a result of both the combinatorial nature of the algorithms as well as the genome-scale size of the data sets on which they are being applied. For example, more than 1 million CPU-hours were needed to generate the gene interaction network that was used to identify the master regulators that drive the mesenchymal phenotype in Glioma. In practical terms, such investigations are only feasible when carried out on a high performance computing (HPC) environment. To address this need, C2B2 has made significant investments in high performance IT infrastructure (utilizing grants from Columbia University, the New York State and the NIH) and has assembled one of the largest HPC facilities dedicated to biological investigation in the nation. The centerpiece of the C2B2 HPC infrastructure is Titan, a 3712 core cluster which was ranked by Top500.org as the 124th fastest computer in the world when the system debuted in 2008. This infrastructure has been instrumental to the success of C2B2, by enabling Center researchers to execute computational investigations that would have otherwise been infeasible and by allowing us to recruit and retain world class faculty. As has been the case in the past, we have now reached a point where the computational needs of our investigators are exceeding the limits of our HPC infrastructure. Historical utilization data demonstrate that computation consumption has been doubling annually. As a result, Titan has been running at its peak capacity for the past six to eight months. We anticipate that demand for computation will increase even further as C2B2 is in the process of transitioning from a Center to a full University Department (Dept. of Systems Biology) with approved budget for 9 more faculty hires. Through this application we seek to quadruple our computational capacity to accommodate the data analysis needs of several NIH funded projects over a period of 2-3 years. Given the central role of computing in the research program of C2B2, the availability of an adequate and easily accessible HPC environment is a critical prerequisite for the successful completion of these projects. The equipment purchase requested here will allow us to continue serving the needs of biomedical research at Columbia University for the foreseeable future.
描述(由申请人提供):计算生物学和生物信息学中心(C2 B2)成立于2003年,其使命是为生物医学研究社区提供结构和系统生物学算法和软件工具,用于分子相互作用的解剖和基于相互作用的细胞表型的阐明。在过去的几年中,C2 B2研究人员已经开发了许多新的分析方法,这些方法已经导致了重要的生物学发现,包括理解DNA形状在蛋白质- DNA结合特异性中的作用,以及发现与恶性表型(包括淋巴瘤、胶质瘤和黑素瘤)的呈现有因果关系的基因。所有这些计算研究中的一个共同点是它们非常重要的计算要求。这是算法的组合性质以及它们所应用的数据集的基因组规模大小的结果。例如,需要超过100万CPU小时来生成基因相互作用网络,该网络用于识别驱动胶质瘤中间充质表型的主调节因子。 实际上,这种调查只有在高性能计算(HPC)环境中进行时才可行。为了满足这一需求,C2 B2在高性能IT基础设施方面进行了大量投资(利用哥伦比亚大学、纽约州和NIH的赠款),并组建了全国最大的HPC设施之一,专门用于生物研究。C2 B2 HPC基础设施的核心是Titan,这是一个3712核心的集群,在2008年首次亮相时被Top500.org评为世界上第124快的计算机。这种基础设施有助于C2 B2的成功,使中心的研究人员能够执行计算调查,否则将是不可行的,并允许我们招募和留住世界一流的教师。 与过去的情况一样,我们现在已经达到了一个点,我们的调查人员的计算需求超过了我们的HPC基础设施的限制。历史利用率数据表明,计算消耗每年翻一番。因此,在过去的六到八个月里,泰坦一直在以最大的能力运行。我们预计,随着C2 B2正在从一个中心过渡到一个完整的大学系(系),对计算的需求将进一步增加。系统生物学),并批准了再雇用9名教师的预算。通过这个应用程序,我们寻求我们的计算能力翻两番,以适应几个NIH资助的项目在2-3年内的数据分析需求。考虑到计算在C2 B2研究计划中的核心作用,提供一个足够且易于访问的HPC环境是成功完成这些项目的关键先决条件。这里要求购买的设备将使我们能够在可预见的未来继续为哥伦比亚大学的生物医学研究提供服务。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation.
- DOI:10.3389/fimmu.2017.00537
- 发表时间:2017
- 期刊:
- 影响因子:7.3
- 作者:Sheng Z;Schramm CA;Kong R;NISC Comparative Sequencing Program;Mullikin JC;Mascola JR;Kwong PD;Shapiro L
- 通讯作者:Shapiro L
De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism.
- DOI:10.1007/s10048-015-0466-9
- 发表时间:2016-01
- 期刊:
- 影响因子:2.2
- 作者:Shang L;Henderson LB;Cho MT;Petrey DS;Fong CT;Haude KM;Shur N;Lundberg J;Hauser N;Carmichael J;Innis J;Schuette J;Wu YW;Asaikar S;Pearson M;Folk L;Retterer K;Monaghan KG;Chung WK
- 通讯作者:Chung WK
Erratum to: HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers.
勘误表:HDAC6 活性是炎症性乳腺癌的非癌基因成瘾中心。
- DOI:10.1186/s13058-017-0841-6
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Putcha,Preeti;Yu,Jiyang;Rodriguez-Barrueco,Ruth;Saucedo-Cuevas,Laura;Villagrasa,Patricia;Murga-Penas,Eva;Quayle,StevenN;Yang,Min;Castro,Veronica;Llobet-Navas,David;Birnbaum,Daniel;Finetti,Pascal;Woodward,WendyA;Bertucci,Franço
- 通讯作者:Bertucci,Franço
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREA CALIFANO其他文献
ANDREA CALIFANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREA CALIFANO', 18)}}的其他基金
Drug Mechanism of Action-based targeting of tumor subpopulations
基于作用的肿瘤亚群靶向药物机制
- 批准号:
10729387 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Elucidating and Targeting tumor dependencies and drug resistance determinants at the single cell level
在单细胞水平上阐明和靶向肿瘤依赖性和耐药性决定因素
- 批准号:
10505333 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Elucidating and Targeting tumor dependencies and drug resistance determinants at the single cell level
在单细胞水平上阐明和靶向肿瘤依赖性和耐药性决定因素
- 批准号:
10709574 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Structural and Functional Biology-based analysis of non-oncogene cancer dependencies
基于结构和功能生物学的非癌基因癌症依赖性分析
- 批准号:
10401148 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Systematic Identification and Pharmacological Targeting of Tumor Dependencies for Precision Cancer Medicine
精准癌症医学中肿瘤依赖性的系统识别和药理学靶向
- 批准号:
9977981 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Systematic Identification and Pharmacological Targeting of Tumor Dependencies for Precision Cancer Medicine
精准癌症医学中肿瘤依赖性的系统识别和药理学靶向
- 批准号:
10204929 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Systematic Identification and Pharmacological Targeting of Tumor Dependencies for Precision Cancer Medicine
精准癌症医学中肿瘤依赖性的系统识别和药理学靶向
- 批准号:
9750650 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Systematic Identification and Pharmacological Targeting of Tumor Dependencies for Precision Cancer Medicine
精准癌症医学中肿瘤依赖性的系统识别和药理学靶向
- 批准号:
9362806 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Research Grant














{{item.name}}会员




