Interactive Medline Search Engine Integrating External Information
集成外部信息的交互式 Medline 搜索引擎
基本信息
- 批准号:8323960
- 负责人:
- 金额:$ 36.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2014-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyArchitectureAreaBiologicalBiologyBiomedical ResearchBipolar DisorderBrain imagingChemistryCollectionDataData AnalysesData SetData SourcesDatabasesDevelopmentEnsureEnvironmentEvaluationGenerationsGenesGenomeGenomicsIndividualInformation RetrievalKnowledgeLinkLiteratureLocationMajor Depressive DisorderMental disordersMethodsMicroarray AnalysisMolecularNeeds AssessmentNeurobiologyNeurosciencesOntologyPathway interactionsPatternPhysiologyPubMedRecordsResearchResearch PersonnelResourcesRetrievalSchizophreniaScientistSolutionsStructureSystemTestingUser-Computer InterfaceVisualWorkbasecluster computingdata integrationdesignexperiencegenome wide association studygraspimprovedinnovationinteroperabilitynovel therapeuticsprogramsprototypeusability
项目摘要
DESCRIPTION (provided by applicant): High throughput experimental methods have accelerated biomedical research dramatically. Approaches such as microarray analysis, genome-wide association studies (GWAS), deep sequencing and brain imaging reduce bottlenecks in data generation and collection. Understanding the biological significance of high throughput data, however, is a major challenge 1. As pointed out by Bota and Swanson, it is now "far beyond the grasp of individual investigators, no matter how brilliant, to remember, evaluate, and synthesize the neuroscience literature, even in restricted domains like network structure, physiology, or chemistry" 2. We argue that a key part of the problem is insufficient support for drawing high dimensional functional relationships based on high throughput experimental data in the context of existing literature and data. Prevailing search solutions, such as PubMed/Google Scholar, are mainly designed for retrieving the most relevant information efficiently but not for explorative hypothesis development. These solutions lack several key functionalities that our proposed system will provide, functionalities required for understanding the biology of high throughput data through literature and database explorations that aim at hypothesis development:
Overview of Medline search results in familiar biological contexts to facilitate exploration:
Presenting the search results in graphic overviews reflecting inherent biological relationships of the retrieved records will be more effective than a linear list of potentially relevant records alone. Such overviews, ideally from multiple biological contexts, should also support efficient interactive exploration of attribute data and pattern associations for deriving non-obvious relationships from multiple perspectives.
Query support for different algorithms, biological entities and data sources: One retrieval algorithm will not fit all situations. Biological entities such as gene IDs and genomic locations need to be supported for Medline queries. The Medline database needs to be supplemented by external data sources such as ontology, pathway, and various databases containing curated information derived from experimental data.
Open architecture for third party plug-ins and cross-application function integration: The support of third party data and function plug-ins are needed to enhance the functionality and the adaptation of a solution. Open architecture will enable the use of intermediate data and/or functions from other solutions.
Incorporating these functions, we propose to develop a system called PubViz that will more effectively support neurobiologists' needs for developing hypotheses on molecular mechanisms underlying major mental disorders through integrated exploration of literature and data related to high throughput experimental results. We will also conduct systematic needs assessments and user tests to ensure that functions we develop match users' needs effectively. Building on our existing component function prototypes, PubViz will provide a query and analysis environment that exceeds other systems in helping scientists work toward formulating hypotheses. It will integrate Medline search results with data and information from external resources and situate relationships visually and interactively in multiple biological contexts that are useful and usable. Creating these combined innovations and human-computer interface (HCI) designs is non-trivial but is feasible given our pilot work and experience in visual Medline exploration solution development, data analysis and integration and usability and usefulness studies. Additionally, focusing this project on neurobiology and mental disorders, a research domain in which we have extensive experience will help us address critical user needs and functionalities more effectively. Moreover, the solution we develop should be adaptable to other biomedical research domains.
DESCRIPTION (provided by applicant): High throughput experimental methods have accelerated biomedical research dramatically. Approaches such as microarray analysis, genome-wide association studies (GWAS), deep sequencing and brain imaging reduce bottlenecks in data generation and collection. Understanding the biological significance of high throughput data, however, is a major challenge 1. As pointed out by Bota and Swanson, it is now "far beyond the grasp of individual investigators, no matter how brilliant, to remember, evaluate, and synthesize the neuroscience literature, even in restricted domains like network structure, physiology, or chemistry" 2. We argue that a key part of the problem is insufficient support for drawing high dimensional functional relationships based on high throughput experimental data in the context of existing literature and data. Prevailing search solutions, such as PubMed/Google Scholar, are mainly designed for retrieving the most relevant information efficiently but not for explorative hypothesis development. These solutions lack several key functionalities that our proposed system will provide, functionalities required for understanding the biology of high throughput data through literature and database explorations that aim at hypothesis development:
Overview of Medline search results in familiar biological contexts to facilitate exploration:
Presenting the search results in graphic overviews reflecting inherent biological relationships of the retrieved records will be more effective than a linear list of potentially relevant records alone. Such overviews, ideally from multiple biological contexts, should also support efficient interactive exploration of attribute data and pattern associations for deriving non-obvious relationships from multiple perspectives.
Query support for different algorithms, biological entities and data sources: One retrieval algorithm will not fit all situations. Biological entities such as gene IDs and genomic locations need to be supported for Medline queries. The Medline database needs to be supplemented by external data sources such as ontology, pathway, and various databases containing curated information derived from experimental data.
Open architecture for third party plug-ins and cross-application function integration: The support of third party data and function plug-ins are needed to enhance the functionality and the adaptation of a solution. Open architecture will enable the use of intermediate data and/or functions from other solutions.
Incorporating these functions, we propose to develop a system called PubViz that will more effectively support neurobiologists' needs for developing hypotheses on molecular mechanisms underlying major mental disorders through integrated exploration of literature and data related to high throughput experimental results. We will also conduct systematic needs assessments and user tests to ensure that functions we develop match users' needs effectively. Building on our existing component function prototypes, PubViz will provide a query and analysis environment that exceeds other systems in helping scientists work toward formulating hypotheses. It will integrate Medline search results with data and information from external resources and situate relationships visually and interactively in multiple biological contexts that are useful and usable. Creating these combined innovations and human-computer interface (HCI) designs is non-trivial but is feasible given our pilot work and experience in visual Medline exploration solution development, data analysis and integration and usability and usefulness studies. Additionally, focusing this project on neurobiology and mental disorders, a research domain in which we have extensive experience will help us address critical user needs and functionalities more effectively. Moreover, the solution we develop should be adaptable to other biomedical research domains.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FAN MENG其他文献
FAN MENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FAN MENG', 18)}}的其他基金
Interactive Medline Search Engine Integrating External Information
集成外部信息的交互式 Medline 搜索引擎
- 批准号:
8144881 - 财政年份:2010
- 资助金额:
$ 36.57万 - 项目类别:
Interactive Medline Search Engine Integrating External Information
集成外部信息的交互式 Medline 搜索引擎
- 批准号:
7888843 - 财政年份:2010
- 资助金额:
$ 36.57万 - 项目类别:
NOVEL MICROARRAY FOR SNP AND METHYLATION DETECTION
用于 SNP 和甲基化检测的新型微阵列
- 批准号:
6379109 - 财政年份:2000
- 资助金额:
$ 36.57万 - 项目类别:
NOVEL MICROARRAY FOR SNP AND METHYLATION DETECTION
用于 SNP 和甲基化检测的新型微阵列
- 批准号:
6291521 - 财政年份:2000
- 资助金额:
$ 36.57万 - 项目类别:
NOVEL MICROARRAY FOR SNP AND METHYLATION DETECTION
用于 SNP 和甲基化检测的新型微阵列
- 批准号:
6523208 - 财政年份:2000
- 资助金额:
$ 36.57万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.57万 - 项目类别:
Research Grant