Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model

小鼠模型中大肠杆菌与肠道微生物群的共生

基本信息

  • 批准号:
    8505684
  • 负责人:
  • 金额:
    $ 3.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The microbial community composition of the human intestine is receiving a lot of attention and now is fairly well characterized. Yet the functional roles of individual microorganisms in the intestinal ecosystem and the dynamic interactions of its community members remain largely uncharacterized, including those interactions that drive competition for resources (i.e., the food web) and those that create conditions favorable for success of the community (e.g., anaerobiosis). Experiments that address these issues cannot be done in humans; they require an animal model that allows testing of the basic ecological principles that underpin the human microbiome. For over a decade, we have used the streptomycin-treated mouse model of intestinal colonization to characterize the functional role of Escherichia coli in the intestine. We learned that different E. coli strains execute different nutritional programs, allowing them to co-colonize the gut. Importantly, we learned that E. coli respires oxygen and thereby lowers the oxygen tension of the cecum, creating conditions that favor growth of the predominantly anaerobic microbial community. Therefore, we hypothesize that E. coli lives in symbiotic relationship with the anaerobes. Since anaerobes are sensitive to oxygen, we predict that the community composition of the intestine depends at least in part on the oxygen scavenging function contributed by E. coli. Since E. coli is unable to hydrolyze complex polysaccharides, which are the primary nutrient source in the gut, and because E. coli can grow only on the degradation products, we predict that anaerobic polysaccharide degradation releases simple sugars that cross-feed E. coli. And, since different E. coli strains execute different nutritional programs in the intestine, we predict that each E. coli strain will interact with distinct subpopulations of the microbial community. Here we outline a Research Plan designed to test these predictions. In Aim 1 we will use high-throughput sequencing of 16S rRNA gene tags and molecular phylogenetic analysis to examine the microbial composition of the streptomycin-treated mouse intestine as it is affected by E. coli colonization. Using isogenic E. coli strains that can and cannot respire oxygen, we will test the prediction that oxygen scavenging in the intestine affects the composition of the anaerobic microbial community. In addition, we will test the prediction that colonization of the intestine with different strains of E. coli, each of which consumes different nutrients in the intestine, will influence the microbial community composition. In Aim 2 we will test the prediction that different E. coli strains physically associate with different members of the microbial community by using 16S analysis of microbes sampled from the intestine by laser capture micro-dissection. Furthermore, we will characterize nutrient flow between E. coli and individual members of the intestinal microbial community in co-cultures. In Aim 3 we wil determine whether surface structures, including O-polysaccharides, flagella, and capsule, target E. coli to specific microhabitats where they could interact with different members of the microbiota. Thus we will characterize the interactions of E. coli with the microbial community in the intestine. PUBLIC HEALTH RELEVANCE: We will use a mouse model of intestinal colonization to explore and characterize the symbiotic relationship in which we hypothesize that E. coli generates anaerobic conditions to stimulate growth of anaerobes that degrade complex polysaccharides, which in turn release simple sugars that cross-feed E. coli. We will use the tools of genomics to determine the microbial community composition as it is impacted by scavenging of oxygen by E. coli and, in addition, we will couple the community analysis with sophisticated microscopic techniques to determine the specific organisms that E. coli physically associates with in the intestine and we will determine nutrient flow between these organisms in co-culture experiments. Our research represents an unprecedented step forward in the effort to characterize the functional roles of individual microbes in the human microbiome.
描述(由申请人提供):人类肠道的微生物群落组成受到了很多关注,现在的特征是相当好。然而,单个微生物在肠生态系统中的功能作用以及其社区成员的动态相互作用在很大程度上仍然没有表现,包括那些推动资源竞争(即食品网)的相互作用以及创造有利于社区成功条件的条件的相互作用(例如,Anaerobiosis)。解决这些问题的实验不能在人类中进行;他们需要一个动物模型,该模型允许测试基于人类微生物组的基本生态原理。十多年来,我们一直使用经链霉素处理的肠定植的小鼠模型来表征大肠杆菌在肠中的功能作用。我们了解到,不同的大肠杆菌菌株执行不同的营养计划,从而使他们可以共同殖民肠道。重要的是,我们了解到大肠杆菌呼吸氧气,从而降低盲肠的氧气张力,从而产生有利于厌氧微生物群落的生长的条件。因此,我们假设大肠杆菌与厌氧菌保持着共生关系。由于厌氧菌对氧气很敏感,因此我们预测肠道的群落组成至少部分取决于大肠杆菌贡献的氧气清除功能。由于大肠杆菌无法水解复杂的多糖,这些多糖是肠道中的主要营养源,并且大肠杆菌只能在降解产物上生长,因此我们预计厌氧多糖降解会释放出交叉食物大肠杆菌的简单糖。而且,由于不同的大肠杆菌菌株在肠中执行不同的营养计划,因此我们预测每个大肠杆菌菌株将与微生物群落的不同亚群相互作用。在这里,我们概述了一项旨在测试这些预测的研究计划。在AIM 1中,我们将使用16S rRNA基因标签和分子系统发育分析的高通量测序来检查链霉素处理的小鼠肠的微生物组成,因为它受到大肠杆菌的影响。使用能够也不能呼吸氧的等源性大肠杆菌菌株,我们将测试肠道清除肠道氧气会影响厌氧微生物群落的组成的预测。此外,我们将测试以下预测,即用不同的大肠杆菌菌株对肠道的定殖(每种大肠杆菌)在肠中消耗了不同的营养,将影响微生物群落组成。在AIM 2中,我们将通过使用16S分析通过激光捕获的微脱吸条对从肠子中采样的微生物进行16S分析来测试以下预测,即不同的大肠杆菌菌株与微生物群落的不同成员进行物理相关。此外,我们将表征大肠杆菌与肠道微生物群落中的个体成员之间的营养流。在AIM 3中,我们将确定表面结构(包括O-杆糖,鞭毛和胶囊)是否能够与特定的微生物群靶向大肠杆菌,并可以与微生物群的不同成员相互作用。因此,我们将表征大肠杆菌与肠中微生物群落的相互作用。 公共卫生相关性:我们将使用肠道定植的小鼠模型来探索和表征共生关系,在这种关系中,我们假设大肠杆菌会产生厌氧条件来刺激厌氧菌的生长,从而降解复杂多糖的厌氧菌的生长,这反过来又释放了交叉进食E. coli的简单糖。我们将使用基因组学的工具来确定微生物群落的组成,因为它受到大肠杆菌清除氧气的影响,此外,我们将将社区分析与复杂的微观微观技术相结合,以确定大肠杆菌在肠道中与大肠杆菌进行物理缔合的特定生物,我们将确定这些生物体在这些生物体中的营养实验之间的营养实验。我们的研究代表了前进的一步,以表征人类微生物组中各个微生物的功能作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TYRRELL CONWAY其他文献

TYRRELL CONWAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TYRRELL CONWAY', 18)}}的其他基金

Mechanisms of Nutrient Competition in the Intestine
肠道营养竞争机制
  • 批准号:
    9220348
  • 财政年份:
    2017
  • 资助金额:
    $ 3.15万
  • 项目类别:
Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model
小鼠模型中大肠杆菌与肠道微生物群的共生
  • 批准号:
    8401893
  • 财政年份:
    2011
  • 资助金额:
    $ 3.15万
  • 项目类别:
Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model
小鼠模型中大肠杆菌与肠道微生物群的共生
  • 批准号:
    8600292
  • 财政年份:
    2011
  • 资助金额:
    $ 3.15万
  • 项目类别:
Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model
小鼠模型中大肠杆菌与肠道微生物群的共生
  • 批准号:
    8302475
  • 财政年份:
    2011
  • 资助金额:
    $ 3.15万
  • 项目类别:
Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model
小鼠模型中大肠杆菌与肠道微生物群的共生
  • 批准号:
    8015175
  • 财政年份:
    2011
  • 资助金额:
    $ 3.15万
  • 项目类别:
Symbiosis of E. coli and the Intestinal Microbiota in a Mouse Model
小鼠模型中大肠杆菌与肠道微生物群的共生
  • 批准号:
    8206549
  • 财政年份:
    2011
  • 资助金额:
    $ 3.15万
  • 项目类别:
BIOINFORMATICS/MICROARRAY SATELLITE CORE-OU NORMAN
生物信息学/微阵列卫星 Core-OU Norman
  • 批准号:
    7960010
  • 财政年份:
    2009
  • 资助金额:
    $ 3.15万
  • 项目类别:
E. coli Growth Parameters in the Intestine
肠道内大肠杆菌生长参数
  • 批准号:
    7860306
  • 财政年份:
    2009
  • 资助金额:
    $ 3.15万
  • 项目类别:
BIOINFORMATICS/MICROARRAY SATELLITE CORE-OU NORMAN
生物信息学/微阵列卫星 Core-OU Norman
  • 批准号:
    7725088
  • 财政年份:
    2008
  • 资助金额:
    $ 3.15万
  • 项目类别:
BIOINFORMATICS/MICROARRAY SATELLITE CORE-OU NORMAN
生物信息学/微阵列卫星 Core-OU Norman
  • 批准号:
    7610268
  • 财政年份:
    2007
  • 资助金额:
    $ 3.15万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the coordinated endothelial-epithelial interactions in adult hair cycle of mouse skin
研究小鼠皮肤成年毛发周期中协调的内皮-上皮相互作用
  • 批准号:
    10674132
  • 财政年份:
    2023
  • 资助金额:
    $ 3.15万
  • 项目类别:
Neuronal Control of Motor State Transitions
运动状态转换的神经元控制
  • 批准号:
    10677946
  • 财政年份:
    2023
  • 资助金额:
    $ 3.15万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 3.15万
  • 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 3.15万
  • 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
  • 批准号:
    10752141
  • 财政年份:
    2023
  • 资助金额:
    $ 3.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了