RF-SRC: A Unified Data Tool
RF-SRC:统一数据工具
基本信息
- 批准号:8368988
- 负责人:
- 金额:$ 25.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-10 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureAreaBiologicalCancer PatientCell LineCell ProliferationCharacteristicsChargeClassificationClinicalCodeCollaborationsCollectionCommunitiesComplementComputer softwareCoupledDNA DamageDataData AnalysesData CompressionDatabasesDecision MakingDiagnostic Neoplasm StagingEffectivenessEnvironmentGene Expression ProfilingGenesGeneticGenomicsGlioblastomaHealth ProfessionalHumanHybridsInterferonsInternetJavaLearningLibrariesLicensingMalignant NeoplasmsMalignant neoplasm of esophagusMeasuresMethodologyMethodsMiningModelingMolecularNeoplasm MetastasisOncogenesOncologistOperative Surgical ProceduresOutcomePathologicPathway interactionsPatientsPerformancePhysiciansPostoperative PeriodPrimary NeoplasmPrior TherapyProceduresProcessProliferation MarkerProteinsPublic DomainsRadiationRecommendationResistanceSamplingSchemeSolutionsStage GroupingStagingStaging SystemThe Cancer Genome AtlasTherapeuticTreesWeightWorkbasecancer typechemotherapyforestgene interactiongraphical user interfaceimprovedmalignant breast neoplasmneoplastic cellnovelpreferenceraf Kinasesstatisticstooltumor growthuser friendly softwareuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Ensemble learning involves the simple task of taking elementary procedures (base learners) and combining them to form an ensemble. This simple process often yields a predictor with superior performance; one of the most successful examples is random forests (RF), an ensemble formed using random tree base-learners. In this project we use RF to study a collection of cancer related problems. One area of focus involves a specific pathway in breast cancer. To date much of the work in elucidating the molecular characteristics of breast cancer has focused on gene expression profiling. These signatures are principally markers for proliferation and do not clearly identify novel or metastasis-specific pathways. We recently experimentally showed how the breast cancer gene Raf Kinase Inhibitory Protein (RKIP) regulates a specific metastasis pathway. Importantly, the RKIP pathway does not influence primary tumor growth or cell proliferation but rather involves metastasis-specific steps. Having worked out the RKIP pathway in experimental detail, this project will use RF to verify statistically that RKIP operationally drives clinical metastasis usin expression data from primary tumor samples. However, this poses a dilemma. While forests are ideal tools for fitting interactions, no rigorous methodology currently exists for untangling the highly involved variable relationships within a forest and there is no comprehensive and rigorous method for selecting variables. In this project we develop a unified prediction and variable selection framework to address this. Applying this we introduce a new variable selection statistic for identifying interactions and use this to validate the RKIP pathway. We develop a unified framework to facilitate the use of this statistic in general. In another application, we introduce grouped variable comparisons for building gene-pathways. Using this we expand our work on the Interferon-Related DNA Damage Resistance Signature (IRDS), a therapeutic signature that can predict resistance to chemotherapy and/or radiation across a wide variety of common human cancers. We describe a regulatory biological network for the IRDS based on multi-dimensional genomics data. Edges of this network are weighted using a RF measure of variable-relatedness to pin-point important gene-gene interactions. In another major thrust, using a uniquely rich worldwide esophageal cancer database, we describe individualized treatment recommendations for esophageal cancer patients using a novel RF algorithm for stage- grouping and prognostication. The algorithm is general enough that it can be applied to other cancers, thus providing physicians, oncologists, and other cancer health care professionals with a new powerful data-analytic tool for individualized prognostication and treatment decision making. To share the methodological and statistical advancements of RF arising from this project we develop a user friendly unified RF software, RF-SRC, to be made freely available under the GNU Public License. This software will allow for massive scalability by utilizing cutting edge parallelization solutions.
PUBLIC HEALTH RELEVANCE: We study several problems related to cancer using random forests (RF) and describe an enhanced unified RF that can be used as a general all-purpose data tool with massive parallel scalability.
描述(由申请者提供):集合学习涉及采取初级程序(基础学习者)并将它们组合成集合的简单任务。这个简单的过程通常产生性能优越的预测器;最成功的例子之一是随机森林(RF),这是一个使用随机树基学习器形成的集合。在这个项目中,我们使用射频来研究一系列与癌症相关的问题。其中一个焦点领域涉及乳腺癌中的特定途径。到目前为止,阐明乳腺癌分子特征的大部分工作都集中在基因表达谱上。这些信号主要是增殖的标志,并不清楚地识别新的或转移特异性的途径。我们最近的实验表明,乳腺癌基因Raf Kinase Inhibition Protein(RKIP)如何调节特定的转移途径。重要的是,RKIP通路不影响原发肿瘤的生长或细胞增殖,而是涉及转移特异性步骤。在研究了RKIP通路的实验细节后,本项目将利用原发肿瘤样本的表达数据,使用RF从统计学上验证RKIP在操作上驱动临床转移。然而,这造成了一个两难境地。虽然森林是拟合相互作用的理想工具,但目前还没有严格的方法来理清森林中高度复杂的变量关系,也没有全面和严格的方法来选择变量。在这个项目中,我们开发了一个统一的预测和变量选择框架来解决这个问题。应用这一点,我们引入了一个新的变量选择统计量来识别相互作用,并用它来验证RKIP途径。我们制定了一个统一的框架,以便于在总体上使用这一统计数据。在另一个应用中,我们引入分组变量比较来构建基因路径。利用这一点,我们扩大了我们在干扰素相关DNA损伤耐受信号(IRDS)方面的工作,这是一种可以预测多种常见人类癌症对化疗和/或辐射耐药的治疗信号。我们描述了一个基于多维基因组数据的IRDS的调控生物学网络。这个网络的边缘使用变量相关性的RF测量来加权,以定位重要的基因-基因交互作用。在另一个主要方面,利用独特丰富的全球食道癌数据库,我们描述了针对食道癌患者的个性化治疗建议,使用一种新的RF算法进行分期和预后预测。该算法具有足够的通用性,可以应用于其他癌症,从而为医生、肿瘤学家和其他癌症保健专业人员提供了一种新的强大的数据分析工具,用于个性化预测和治疗决策。为了分享这个项目在射频方法和统计方面的进步,我们开发了一个用户友好的统一射频软件RF-SRC,该软件将根据GNU公共许可证免费提供。该软件将利用尖端的并行化解决方案实现巨大的可扩展性。
公共卫生相关性:我们使用随机森林(RF)研究了几个与癌症相关的问题,并描述了一种增强的统一RF,它可以用作具有大规模并行可伸缩性的通用通用数据工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hemant Ishwaran其他文献
Hemant Ishwaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hemant Ishwaran', 18)}}的其他基金
Real time risk prognostication via scalable hazard trees and forests
通过可扩展的危险树和森林进行实时风险预测
- 批准号:
10655749 - 财政年份:2023
- 资助金额:
$ 25.51万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.51万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 25.51万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 25.51万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 25.51万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 25.51万 - 项目类别:
Standard Grant