Role of matrix shear stress in annulus fibrosus cell mechanobiology
基质剪切应力在纤维环细胞力学生物学中的作用
基本信息
- 批准号:8230610
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-17 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimal ModelAnimalsArchitectureCell Culture TechniquesCell physiologyCellsCollagenCollagen FibrilCollagen Type IComplexComputer SimulationConfocal MicroscopyCuesDevelopmentDiseaseElementsEmbryoEnvironmentExhibitsExposure toExtracellular MatrixFibrillar CollagenFilmGelGene ExpressionGeneral PopulationHomeostasisHumanImaging TechniquesIn SituIn VitroInjuryIntervertebral disc structureKnowledgeLiteratureMaintenanceMapsMechanical StressMechanicsMicroscopyModelingMolecularMolecular ProfilingMotionOptical Coherence TomographyOutcomePhenotypePhysiologicalPlayPopulationPrevention therapyPublishingRadialRegulationRelative (related person)ReportingResearchResolutionRoleSimulateSlideStimulusStressStructureSystemTestingTissuesTranslatingUnited StatesVariantbasecell growth regulationexperiencein vivoinsightinterfacialintervertebral disk degenerationnovelprogenitorprogramspublic health relevanceregenerativerepairedresponsescaffoldshear stressspatial temporal variation
项目摘要
DESCRIPTION (provided by applicant): Degenerative disc disease (DDD) continues to be a burden on the general population and economy both in the United States and worldwide. There is strong evidence from the literature that indicate that mechanical stress plays a role in the progression of DDD. However, the complex lamellar architecture of the disc and the zonal variation in cell phenotype have made it difficult to translate tissue level mechanics to the cellular micromechanical environment, which governs intervertebral disc (IVD) cell function. Understanding how cells respond to stimuli that can be characterized in detail is important for developing repair strategies where scaffolds can be tailored to provide the appropriate micromechanical cues. Based on observations from our previous animal studies and recently reported descriptions of the interlamellar (IL) matrix in normal and degenerate annulus fibrosus (AF), we have developed an hypothesis on the regulation of the IL space by mechanical stress. This central hypothesis states that radial and shear stress coordinately modulate the IL matrix through mechanoregulation of AF cells. In order to provide cells with both radial and shear stimuli in a uniform micromechanical environment, we propose to implement a novel collagen interface cell culture model. Cells will be cultured and deformed between a fibrillar collagen thin film (CTF) that mimics the microfibrillar structure of the IL matrix and its type-matched collagen gel. Using this interface culture model, Aim 1 will determine how AF cells respond to macrostructural shear. Specifically, it will characterize zonal- and substrate-dependent deformation of inner and outer AF cells, and investigate whether intrinsic or structural factors dominate their responses. In Aim 2, our hypothetical mechanobiologic model of AF cell regulation by radial and shear stress will be tested using the interface culture model. A range of tension-compression stress and shear strain will be studied in the context of the healthy IL compartment. In parallel, a novel finite element model that explicitly incorporates an IL compartment will be developed, validated using optical coherence tomography, and implemented to predict the shear environment for IL cells. The mechanobiologic response obtained experimentally can then be spatially "mapped" to corresponding shear regions.
PUBLIC HEALTH RELEVANCE: There is substantial evidence that matrix shear stresses are generated in the intervertebral disc, related to injury and degeneration. Results of this project will provide detailed insight into the effects of mechanical shear stresses on cell function. Such knowledge can aid the development of regenerative strategies against disorders such as degenerative disc disease.
描述(由申请人提供):退行性间盘疾病(DDD)在美国和世界范围内仍然是普通人口和经济的负担。从文献中有强有力的证据表明,机械应力在DDD的进展中起着作用。然而,椎间盘的复杂板层结构和细胞表型的带状变化使得将组织水平的力学转化为细胞微机械环境变得困难,而细胞微机械环境控制着椎间盘(IVD)的细胞功能。了解细胞对可以详细描述的刺激的反应对于制定修复策略非常重要,在修复策略中,可以定制支架以提供适当的微机械线索。根据我们以前的动物研究和最近报道的对正常和退变纤维环中板层间基质(IL)基质的描述,我们提出了一个关于机械应力对IL间隙的调节的假说。这一中心假设认为,径向应力和剪切力通过对房颤细胞的机械调节来协调调节IL基质。为了在均匀的微观力学环境中为细胞提供径向和剪切刺激,我们提出了一种新的胶原界面细胞培养模型。细胞将在模仿IL基质微纤维结构的纤维状胶原薄膜(CTF)及其类型匹配的胶原凝胶之间进行培养和变形。使用这个界面培养模型,Aim 1将确定房颤细胞如何对宏观结构剪切做出反应。具体地说,它将表征内、外房颤细胞的带状和底物相关的变形,并研究内在因素或结构因素是否主导它们的反应。在目标2中,我们假设的径向和剪切应力调节房颤细胞的机制生物学模型将使用界面培养模型进行验证。一系列的拉伸-压缩应力和剪切应变将在健康的IL间隔室中进行研究。同时,将开发一种新的有限元模型,该模型明确包含一个IL隔室,使用光学相干断层扫描进行验证,并用于预测IL细胞的剪切环境。然后,通过实验获得的机械生物响应可以被空间“映射”到相应的剪切区。
与公众健康相关:有大量证据表明,基质剪应力在椎间盘中产生,与损伤和退变有关。该项目的结果将为深入了解机械剪切应力对细胞功能的影响提供详细的见解。这些知识可以帮助制定针对退行性腰椎间盘疾病等疾病的再生策略。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three dimensional mesoscale analysis of translamellar cross-bridge morphologies in the annulus fibrosus using optical coherence tomography.
- DOI:10.1002/jor.22778
- 发表时间:2015-03
- 期刊:
- 影响因子:2.8
- 作者:Han, Sang Kuy;Chen, Chao-Wei;Wierwille, Jerry;Chen, Yu;Hsieh, Adam H.
- 通讯作者:Hsieh, Adam H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam H. Hsieh其他文献
Analysis of strategies to increase external fixator stiffness: Is double stacking worth the cost?
- DOI:
10.1016/j.injury.2013.11.013 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:
- 作者:
Sara Strebe;Hyunchul Kim;Joseph P. Russell;Adam H. Hsieh;Jason Nascone;Robert V. O’Toole - 通讯作者:
Robert V. O’Toole
Correction to: Deformability of Human Mesenchymal Stem Cells Is Dependent on Vimentin Intermediate Filaments
- DOI:
10.1007/s10439-017-1975-5 - 发表时间:
2018-01-02 - 期刊:
- 影响因子:5.400
- 作者:
Poonam Sharma;Zachary T. Bolten;Diane R. Wagner;Adam H. Hsieh - 通讯作者:
Adam H. Hsieh
Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro
- DOI:
10.1016/j.jspd.2015.06.008 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Matthew E. Oetgen;Addison Goodley;Byungseok Yoo;Darryll J. Pines;Adam H. Hsieh - 通讯作者:
Adam H. Hsieh
The Effect of Distal Radius Locking Plates on Articular Contact Pressures
- DOI:
10.1016/j.jhsa.2011.05.015 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
Matthew H. Walker;Hyunchul Kim;Adam H. Hsieh;Robert V. O'Toole;W. Andrew Eglseder - 通讯作者:
W. Andrew Eglseder
Quantifying and comparing torsional strains after olecranon plating
- DOI:
10.1016/j.injury.2011.06.417 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Scott G. Edwards;Benjamin D. Martin;Rose H. Fu;Joseph M. Gill;Mani K. Nezhad;Jeffrey A. Orr;Allen M. Ferrucci;James Fraser;Andrea Singer;Adam H. Hsieh - 通讯作者:
Adam H. Hsieh
Adam H. Hsieh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam H. Hsieh', 18)}}的其他基金
Role of matrix shear stress in annulus fibrosus cell mechanobiology
基质剪切应力在纤维环细胞力学生物学中的作用
- 批准号:
8114388 - 财政年份:2011
- 资助金额:
$ 16.41万 - 项目类别:
Measuring intradiscal pressure during degeneration in rat discs using a fiber opt
使用光纤测量大鼠椎间盘退变期间的椎间盘内压力
- 批准号:
7673076 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
Measuring intradiscal pressure during degeneration in rat discs using a fiber opt
使用光纤测量大鼠椎间盘退变期间的椎间盘内压力
- 批准号:
7252910 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
Measuring intradiscal pressure during degeneration in rat discs using a fiber opt
使用光纤测量大鼠椎间盘退变期间的椎间盘内压力
- 批准号:
7405389 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
Measuring intradiscal pressure during degeneration in rat discs using a fiber opt
使用光纤测量大鼠椎间盘退变期间的椎间盘内压力
- 批准号:
7576800 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
SPINAL BENDING MOTIONS FOR PREVENTING DISC DEGENERATION
防止椎间盘退变的脊柱弯曲运动
- 批准号:
6534537 - 财政年份:2002
- 资助金额:
$ 16.41万 - 项目类别:
SPINAL BENDING MOTIONS FOR PREVENTING DISC DEGENERATION
防止椎间盘退变的脊柱弯曲运动
- 批准号:
6630379 - 财政年份:2002
- 资助金额:
$ 16.41万 - 项目类别:
SPINAL BENDING MOTIONS FOR PREVENTING DISC DEGENERATION
防止椎间盘退变的脊柱弯曲运动
- 批准号:
6406394 - 财政年份:2001
- 资助金额:
$ 16.41万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists