EHR-based patient safety: Automated error detection in neonatal intensive care
基于 EHR 的患者安全:新生儿重症监护中的自动错误检测
基本信息
- 批准号:8517787
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsCaringCategoriesCessation of lifeCharacteristicsChildChild health careClassificationClinicalDataDetectionDimensionsElectronic Health RecordFoundationsFunding OpportunitiesGoldHospitalsHourHumanHuman DevelopmentInformation SystemsInformation TechnologyInstitutesInstitutionInterventionKnowledgeLaboratoriesLiquid substanceLiteratureManualsMedical ErrorsMedication ErrorsMethodologyMethodsMonitorNatural Language ProcessingNeonatalNeonatal Intensive CareNeonatal Intensive Care UnitsNewborn InfantPatient AdmissionPatient MonitoringPatientsPerformancePharmaceutical PreparationsPreventionProcessProspective StudiesReportingResearchResearch DesignRetrospective StudiesRiskSafetySolidSpecific qualifier valueSpeedSystemTechniquesTestingTextTimeWorkbaseclinical carecomputerizedcostdesignexperienceimprovedindexinginnovationnovelpatient safetyphrasesresponsetool
项目摘要
DESCRIPTION (provided by applicant): In the field of neonatal patient safety, the paucity of systematic research is a critical barrier to progress. Notably missing are studies that meticulously investigate Electronic Health Records (EHR) and information technology in detecting neonatal intensive care-related errors. The expert panel at the National Institute of Child Health and Human Development (NICHHD) identified multiple gaps in the current knowledge of neonatal patient safety research. The proposed work is a well focused response to three dimensions of the Funding Opportunity Announcement: 1.Develop prospective and retrospective study designs to collect data on patient safety and adverse events. 2.Study the strength and limitations of current methods of error reporting systems. 3.Study the usefulness of commercial IT systems and EHRs in reducing medical errors. In our study we seek to shift patient safety research toward an automated and computerized approach to achieve a more comprehensive patient safety paradigm. We will develop novel Electronic Health Record (EHR) content-based automated algorithms that are new to patient safety research to 1) detect errors (Aim 1) and 2) categorize subsequent harm (Aim 2). State of the art information extraction and statistical classification techniques from the field of clinical Natural Language Processing (NLP) will be adapted to the patient safety research tasks. In Aim 1 we will fill the gap in the literatre by implementing a focused manual review of 700 charts (one full year of patient admissions at our institution) in one of the largest Neonatal Intensive Care Units (NICU) in the nation. Using a trigger tool, we will identify errors occurring in three specified categories - laboratory test errrs, medication/fluid errors, and airway management errors. We will develop novel algorithms for automated EHR-based detection of the errors and evaluate the performance of the new algorithms against the performance of both trigger tool review by human chart reviewers (current gold standard) and the voluntary incident reporting system (accepted standard). In Aim 2, we will study the utility of novel EHR-based information extraction and statistical algorithms for the automated categorization of errors according to the resulting level of harm. Our proposed work has the potential to accomplish a paradigm shift in the methods of neonatal patient safety research and practice. The study is a fundamental step to automating patient safety monitoring on a large scale and improving error identification and patient safety in NICUs for millions of children every year.
描述(申请人提供):在新生儿患者安全领域,缺乏系统性研究是取得进展的关键障碍。值得注意的是,缺少仔细调查电子健康记录(EHR)和信息技术检测新生儿重症监护相关错误的研究。国家儿童健康与人类发展研究所(NICHHD)的专家小组发现,目前对新生儿患者安全研究的了解存在多个空白。拟议的工作是对资助机会公告的三个方面的重点回应:1.开发前瞻性和回溯性研究设计,以收集有关患者安全和不良事件的数据。2.研究当前错误报告系统方法的优点和局限性。3.研究商业IT系统和EHR在减少医疗差错方面的有用性。在我们的研究中,我们试图将患者安全研究转向自动化和计算机化的方法,以实现更全面的患者安全范例。我们将开发新的基于内容的电子健康记录(EHR)自动化算法,这些算法对患者安全研究是新的,以1)检测错误(目标1)和2)对后续伤害进行分类(目标2)。临床自然语言处理(NLP)领域的最新信息提取和统计分类技术将适应患者安全研究任务。在目标1中,我们将通过在全国最大的新生儿重症监护病房(NICU)之一对700张图表(我们机构一整年的患者入院情况)实施有重点的手动审查来填补文献中的空白。使用触发工具,我们将识别发生在三个特定类别中的错误-实验室测试错误、药物/液体错误和呼吸道管理错误。我们将开发基于电子病历的错误自动检测的新算法,并对照人类图表审查员的触发工具审查(当前的黄金标准)和自愿事件报告系统(公认标准)的性能来评估新算法的性能。在目标2中,我们将研究基于电子病历的新型信息提取和统计算法的效用,以根据所产生的危害程度对错误进行自动分类。我们提出的工作有可能实现新生儿患者安全研究和实践方法的范式转变。这项研究是实现大规模患者安全监测自动化的根本步骤,并改善每年数百万儿童在NICU中的差错识别和患者安全。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Imre Solti其他文献
Imre Solti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Imre Solti', 18)}}的其他基金
EHR-based patient safety: Automated error detection in neonatal intensive care
基于 EHR 的患者安全:新生儿重症监护中的自动错误检测
- 批准号:
8334934 - 财政年份:2012
- 资助金额:
$ 25.41万 - 项目类别:
Increasing Clinical Trial Enrollment: A Semi-Automated Patient Centered Approach
增加临床试验注册人数:以患者为中心的半自动化方法
- 批准号:
8331381 - 财政年份:2010
- 资助金额:
$ 25.41万 - 项目类别:
Increasing Clinical Trial Enrollment: A Semi-Automated Patient Centered Approach
增加临床试验注册人数:以患者为中心的半自动化方法
- 批准号:
8215715 - 财政年份:2010
- 资助金额:
$ 25.41万 - 项目类别:
Increasing Clinical Trial Enrollment: A Semi-Automated Patient Centered Approach
增加临床试验注册人数:以患者为中心的半自动化方法
- 批准号:
8145098 - 财政年份:2010
- 资助金额:
$ 25.41万 - 项目类别:
Increasing Clinical Trial Enrollment: A Semi-Automated Patient Centered Approach
增加临床试验注册人数:以患者为中心的半自动化方法
- 批准号:
7770648 - 财政年份:2009
- 资助金额:
$ 25.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




