Commercialization of the Shutter-Speed Model for Dynamic MRI in Cancer Diagnosis

癌症诊断中动态 MRI 快门速度模型的商业化

基本信息

  • 批准号:
    8792283
  • 负责人:
  • 金额:
    $ 55.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-23 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite remarkable advances in cancer detection and treatment, the disease continues to be a leading cause of mortality in the US accounting for 23% of all deaths in 2011. Cancer of the breast and prostate are by far the most common forms diagnosed in US women and men, respectively, and together are expected to represent more than 450,000 (246,000 prostate, 229,000 breast cancers) new cases and more than 68,000 deaths this year. Since the serious overtreatment of each disease is such a significant issue, improved methods for minimally invasive detection and therapy monitoring are badly needed. Dynamic contrast- enhanced (DCE)-MRI offers substantial promise in this regard. It is a technique acquiring a time-series of T1- weighted MR images before, during, and after intravenous injection of a paramagnetic contrast reagent (CR). The benefits of quantifying the DCE-MRI time-series using a pharmacokinetic model have gained significant interest in recent years and the resulting parametric maps are increasingly important in cancer diagnostics and treatment evaluation. Recent studies demonstrate that quantitative DCE-MRI has the potential to improve accuracy in cancer detection and provide earlier and more accurate evaluation of cancer response to therapy. The overall goal of this SBIR Fast-Track project is to develop and validate a commercial diagnostic software application based on the "Shutter-Speed Model" (SSM) for quantitative DCE-MRI. The SSM is a novel algorithm that properly accounts for the finite kinetics of water exchange between tissue compartments. This is important because a unique aspect of DCE-MRI is that the CRs are detected indirectly, via their effect on the 1H2O MR signal; CR is the tracer molecule but water is the signal molecule. The SSM approach naturally embraces this feature and has been shown to deliver more reliable discrimination between benign and malignant tissue than the standard tracer DCE pharmacokinetic model.
描述(由申请人提供):尽管癌症检测和治疗取得了显著进展,但该疾病仍然是美国死亡的主要原因,占2011年所有死亡的23%。到目前为止,乳腺癌和前列腺癌分别是美国女性和男性中最常见的癌症,预计今年将有超过45万例(246,000例前列腺癌,229,000例乳腺癌)新发病例和超过68,000例死亡。由于每种疾病的严重过度治疗是如此重要的问题,因此迫切需要用于微创检测和治疗监测的改进方法。动态对比增强(DCE)-MRI在这方面提供了实质性的承诺.它是一种在静脉注射顺磁造影剂(CR)之前、期间和之后采集T1加权MR图像的时间序列的技术。近年来,使用药代动力学模型量化DCE-MRI时间序列的益处已经获得了极大的兴趣,并且由此产生的参数图在癌症诊断和治疗评价中越来越重要。最近的研究表明,定量DCE-MRI有可能提高癌症检测的准确性,并提供更早和更准确的癌症治疗反应评估。 该SBIR快速通道项目的总体目标是开发和验证基于定量DCE-MRI的“快门速度模型”(SSM)的商业诊断软件应用程序。SSM是一种新的算法,适当地占有限的动力学之间的水交换组织隔间。这一点很重要,因为DCE-MRI的一个独特之处在于,通过对1H 2 O MR信号的影响间接检测CR; CR是示踪分子,而水是信号分子。SSM方法自然地包含该特征,并且已经显示出比标准示踪剂DCE药代动力学模型在良性和恶性组织之间提供更可靠的区分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan M Chamberlain其他文献

Ryan M Chamberlain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan M Chamberlain', 18)}}的其他基金

CT-based Biomarker for Diagnosis of COPD Phenotypes and Disease Progression
基于 CT 的生物标志物用于诊断 COPD 表型和疾病进展
  • 批准号:
    8590996
  • 财政年份:
    2013
  • 资助金额:
    $ 55.18万
  • 项目类别:
Commercialization of the Shutter-Speed Model for Dynamic MRI in Cancer Diagnosis
癌症诊断中动态 MRI 快门速度模型的商业化
  • 批准号:
    8592015
  • 财政年份:
    2013
  • 资助金额:
    $ 55.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 55.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了