Modeling Crowding and Confinement of Cellular Environments
模拟蜂窝环境的拥挤和限制
基本信息
- 批准号:8780977
- 负责人:
- 金额:$ 29.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityBindingBiochemical ProcessBiological ProcessCell physiologyCellsChemicalsComputer SimulationCrowdingDNA-Directed RNA PolymeraseDataDependenceDiseaseElectrostaticsEnvironmentEvolutionFoundationsFourier TransformHigh temperature of physical objectIn VitroKineticsMeasuresMethodsModelingMolecularNMR SpectroscopyNeutronsOrthologous GeneParkinson DiseasePositioning AttributePropertyProtein ConformationProteinsResearchRibosomal ProteinsSamplingSolutionsStructureSystemTechniquesTemperatureTestingThermodynamicsUbiquitinValidationWeightbasechymotrypsin inhibitorcomputer studiesdesignhuman diseasein vivoinsightlink proteinmolecular dynamicsmutantprotein foldingpublic health relevanceresearch studysimulationtherapy designthermophilic organismtrend
项目摘要
DESCRIPTION (provided by applicant): The crowded environments inside cellular compartments are very different from the typical dilute conditions of in vitro and in silico biophysical studies of biomolecular systems. The long-term objective of this project is to bridge the in vitro-in vivo gap, by quantitatively reconstructing the influences of cellular environments on the thermodynamic and kinetic properties of biomolecules. Exploiting tremendous opportunities opened by our postprocessing approach for modeling effects of crowded cell-like environments and other recent advances, in this project we will (1) advance FFT-based postprocessing to achieve high accuracy in modeling crowding; (2) quantitatively delineate temperature dependence of crowding effects; and (3) characterize conformational ensembles and binding of intrinsically disordered proteins under crowding. Through capitalizing on FFT-based postprocessing and carrying out our own wet-lab studies, we will closely integrate computation and experiment to overcome challenges toward gaining insights into in vivo biochemical processes. The ability afforded by this research to use dilute-solution experiments and simulations for predicting the conformational ensembles of intrinsically disordered proteins under cell-like conditions will move us forward in elucidating their cellular functions. The conceptual advance that macromolecular crowding in cellular environments may serve as an important factor for protein stability in thermophiles could have broad implications for protein evolution and design.
描述(由申请人提供):细胞隔间内的拥挤环境与体外和生物分子系统的硅生物物理研究中的典型稀释条件非常不同。该项目的长期目标是通过定量重建细胞环境对生物分子热力学和动力学特性的影响来弥合体内外的差距。利用我们的后处理方法为拥挤细胞样环境的建模效果和其他最新进展提供的巨大机会,在这个项目中,我们将(1)推进基于fft的后处理,以实现对拥挤建模的高精度;(2)定量描述拥挤效应的温度依赖性;(3)表征拥挤条件下内在无序蛋白质的构象集合和结合。通过利用基于fft的后处理和开展我们自己的湿实验室研究,我们将紧密结合计算和实验,以克服对体内生化过程的深入了解的挑战。本研究提供的使用稀溶液实验和模拟来预测细胞样条件下内在无序蛋白质的构象集合的能力将推动我们在阐明其细胞功能方面取得进展。细胞环境中的大分子拥挤可能是嗜热生物蛋白质稳定性的重要因素,这一概念的进步可能对蛋白质的进化和设计产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huan-Xiang Zhou其他文献
Huan-Xiang Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huan-Xiang Zhou', 18)}}的其他基金
Quantitative, Mechanistic Studies of Biomolecular Recognition
生物分子识别的定量、机制研究
- 批准号:
10404672 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Administrative Supplement to Acquire a GPU Cluster
获取 GPU 集群的管理补充
- 批准号:
10581422 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Quantitative, Mechanistic Studies of Biomolecular Recognition
生物分子识别的定量、机制研究
- 批准号:
10586066 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Quantitative, Mechanistic Studies of Biomolecular Recognition
生物分子识别的定量、机制研究
- 批准号:
9904727 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Quantitative, Mechanistic Studies of Biomolecular Recognition
生物分子识别的定量、机制研究
- 批准号:
9071084 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Quantitative, Mechanistic Studies of Biomolecular Recognition
生物分子识别的定量、机制研究
- 批准号:
10204595 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Modeling Crowding and Confinement of Cellular Environments
模拟蜂窝环境的拥挤和限制
- 批准号:
8510663 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
Modeling Crowding and Confinement of Cellular Environments
模拟蜂窝环境的拥挤和限制
- 批准号:
7986642 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
Modeling Crowding and Confinement of Cellular Environments
模拟蜂窝环境的拥挤和限制
- 批准号:
8918662 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
Modeling Crowding and Confinement of Cellular Environments
模拟蜂窝环境的拥挤和限制
- 批准号:
8118257 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 29.91万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 29.91万 - 项目类别:
Studentship














{{item.name}}会员




