Structural basis of mRNA decapping by Dcp2: conformational changes & co-activator

Dcp2 mRNA 脱帽的结构基础:构象变化

基本信息

项目摘要

DESCRIPTION (provided by applicant): Cellular regulation of messenger RNA (mRNA) is crucial for proper gene expression. One of the major pathways used to regulate eukaryotic mRNA is 5'-to-3' decay. A critical step in this pathway is the removal of the protective methyl-guanosine cap found on the 5'-end of all eukaryotic mRNA, which commits the transcript to rapid degradation. Cleavage of the cap structure is catalyzed by the conserved decapping enzyme Dcp2, in combination with protein coactivators that modulate decapping activity. Dcp2 is essential for microRNA- mediated degradation of mRNA transcripts in Drosophila, and important for degradation of long non-coding RNAs in yeast. These two classes of non-coding RNAs are important for the maintenance of cellular equilibrium in mammals and abnormal levels of micro or long non-coding RNAs are found in many human cancers. Despite the biological importance of decapping and 5'-to-3' mRNA decay, the structural details of mRNA cap cleavage by Dcp2 and its protein-protein interactions with coactivators remain poorly understood. The decapping enzyme Dcp2 appears to regulate mRNA cap removal using a combination of conformational dynamics and protein-protein interactions. Recent studies suggest that the two domains of Dcp2 form a closed, composite active site that recognizes mRNA substrate and catalyzes cap cleavage, while coactivators may accelerate decapping by promoting or stabilizing the closed, catalytically-active conformation of Dcp2. In this proposal, a diverse set f biochemical, biophysical and genetics experiments will be used to test these hypotheses by constructing a comprehensive structural model for Dcp2 activity. The catalytically-active conformation of Dcp2 will be stabilized using transition state analogs (TSAs) that mimic cap phosphate hydrolysis in the active site of Dcp2. TSAs based on oxometallate or metal fluoride additives will be identified using a combination of small angle x-ray scattering, fluorescence polarization and enzyme inhibition experiments. TSAs that promote the active conformation of Dcp2 will be structurally characterized using NMR spectroscopy and X-ray crystallography. To investigate the structural role played by coactivators of decapping, NMR spectroscopy will be used to identify contacts between the catalytic domain of Dcp2 and coactivators Dcp1 and Edc1 that might be protein-protein interaction surfaces that promote the closed, active conformation of Dcp2. NMR structural assignments, in combination with other structural data obtained from TSA studies where possible, will be used to model how coactivators perturb the conformational equilibria of Dcp2 and affect decapping activity. Mutational analyses, using in vitro decapping kinetics and in vivo yeast complementation experiments, will be used to link structure to phenotype and confirm the biological relevance of the structural model. These studies will provide a molecular level understanding of how protein-protein interactions and conformational changes in the conserved decapping enzyme Dcp2 control mRNA cap cleavage and thus help regulate transcript stability.
描述(由申请人提供):信使 RNA (mRNA) 的细胞调节对于正确的基因表达至关重要。用于调节真核 mRNA 的主要途径之一是 5' 至 3' 衰变。该途径的一个关键步骤是去除所有真核 mRNA 5' 端的保护性甲基鸟苷帽,这使得转录物快速降解。帽结构的裂解由保守的脱帽酶 Dcp2 与调节脱帽活性的蛋白质共激活剂结合催化。 DCp2 对于果蝇中 microRNA 介导的 mRNA 转录物降解至关重要,对于酵母中长非编码 RNA 的降解也很重要。这两类非编码 RNA 对于哺乳动物细胞平衡的维持非常重要,并且在许多人类癌症中发现了异常水平的微小或长非编码 RNA。尽管脱帽和 5'-to-3' mRNA 降解具有生物学重要性,但 Dcp2 裂解 mRNA 帽的结构细节及其与共激活剂的蛋白质-蛋白质相互作用仍然知之甚少。脱帽酶 Dcp2 似乎通过构象动力学和蛋白质-蛋白质相互作用的组合来调节 mRNA 帽的去除。最近的研究表明,Dcp2 的两个结构域形成一个封闭的复合活性位点,可识别 mRNA 底物并催化帽子裂解,而共激活剂可能通过促进或稳定 DCP2 的封闭催化活性构象来加速脱帽。在本提案中,将通过构建 Dcp2 活性的综合结构模型,使用多种生化、生物物理和遗传学实验来检验这些假设。 Dcp2 的催化活性构象将使用模拟 Dcp2 活性位点中的磷酸帽水解的过渡态类似物 (TSA) 来稳定。基于金属氧酸盐或金属氟化物添加剂的 TSA 将通过小角度 X 射线散射、荧光偏振和酶抑制实验的组合来鉴定。促进 Dcp2 活性构象的 TSA 将使用 NMR 光谱和 X 射线晶体学进行结构表征。为了研究脱帽共激活剂所起的结构作用,核磁共振波谱将用于识别 Dcp2 催化结构域与共激活剂 Dcp1 和 Edc1 之间的接触,这些接触可能是促进 Dcp2 闭合、活性构象的蛋白质-蛋白质相互作用表面。 NMR 结构分配,在可能的情况下,与 TSA 研究中获得的其他结构数据相结合,将用于模拟共激活剂如何扰乱 Dcp2 的构象平衡并影响脱帽活性。利用体外脱盖动力学和体内酵母互补实验的突变分析将用于将结构与表型联系起来并确认结构模型的生物学相关性。这些研究将在分子水平上了解保守的脱帽酶 Dcp2 中的蛋白质-蛋白质相互作用和构象变化如何控制 mRNA 帽切割,从而帮助调节转录稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Scott Mugridge其他文献

Jeffrey Scott Mugridge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Scott Mugridge', 18)}}的其他基金

Administrative supplement to purchase a MerMade 4 oligonucleotide synthesizer for the large-scale production of modified RNA substrates
购买 MerMade 4 寡核苷酸合成仪用于大规模生产修饰 RNA 底物的行政补充
  • 批准号:
    10797873
  • 财政年份:
    2021
  • 资助金额:
    $ 5.22万
  • 项目类别:
Selectivity and regulation of mRNA demethylation by iron-dependent dioxygenases
铁依赖性双加氧酶对 mRNA 去甲基化的选择性和调节
  • 批准号:
    10438887
  • 财政年份:
    2021
  • 资助金额:
    $ 5.22万
  • 项目类别:
Selectivity and regulation of mRNA demethylation by iron-dependent dioxygenases
铁依赖性双加氧酶对 mRNA 去甲基化的选择性和调节
  • 批准号:
    10620782
  • 财政年份:
    2021
  • 资助金额:
    $ 5.22万
  • 项目类别:
Selectivity and regulation of mRNA demethylation by iron-dependent dioxygenases
铁依赖性双加氧酶对 mRNA 去甲基化的选择性和调节
  • 批准号:
    10276549
  • 财政年份:
    2021
  • 资助金额:
    $ 5.22万
  • 项目类别:
Molecular tools to understand cellular mRNA demethylation
了解细胞 mRNA 去甲基化的分子工具
  • 批准号:
    10026274
  • 财政年份:
    2014
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural basis of mRNA decapping by Dcp2: conformational changes & co-activator
Dcp2 mRNA 脱帽的结构基础:构象变化
  • 批准号:
    8607845
  • 财政年份:
    2013
  • 资助金额:
    $ 5.22万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了