Cardiolipin and the mitochondrial ADP/ATP carrier interactome
心磷脂和线粒体 ADP/ATP 载体相互作用组
基本信息
- 批准号:8437535
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Methylglutaconic aciduria type 2Active Biological TransportAdenine Nucleotide TranslocaseAffinity ChromatographyAllelesAmino Acid MotifsAmino AcidsBindingCardiolipinsCardiomyopathiesCardiovascular DiseasesCause of DeathCell Culture TechniquesCell LineCell modelChildComplexDependencyDiseaseEquipment and supply inventoriesFamilyGoalsHeartHeart DiseasesHumanHypertrophic CardiomyopathyIndividualInheritedLinkMammalian CellMediatingMetabolismMitochondriaMitochondrial DiseasesMitochondrial MatrixModelingMolecularMusMutationMyopathyOxidative PhosphorylationPathologyPhospholipid MetabolismPhospholipidsPhysiologicalPhysiologyProductionProtein IsoformsProteinsRelative (related person)RoleSLC25A4 geneSLC25A5 geneSaccharomyces cerevisiaeSequence HomologySideTestingUnited StatesVariantWorkYeastsbasedefined contributiondesigndiabetic cardiomyopathyinsightmitochondrial dysfunctionmitochondrial membranemutantnovelpublic health relevancerespiratoryskeletalstable cell line
项目摘要
DESCRIPTION (provided by applicant): The ADP/ATP carrier/Adenine nucleotide translocase (yeast AAC = mammalian ANT) mediates the 1:1 exchange of ADP into and ATP out of the mitochondrial matrix and is thus required for oxidative phosphorylation (OXPHOS). Recently, we demonstrated that the major ADP/ATP carrier in the yeast Saccharomyces cerevisiae, Aac2p, physically associates with the respiratory supercomplex but only in the context of mitochondrial membranes that contain the unique phospholipid cardiolipin (CL). ANT1 deficiencies and mutations have been linked to numerous diseases including hypertrophic cardiomyopathy. Moreover, there are a multitude of pathologies caused by alterations in CL metabolism including both inherited and diabetic cardiomyopathies. Given the critical importance of CL for the Aac2p interactome, we hypothesize that the CL-dependent ADP/ATP carrier interactome represents the mitochondrion's "Achilles' heel" in the multiple disease states that result from altered CL metabolism. The goal of the first specific aim is to identify mammalian ANT binding partners. Once an inventory of interacting proteins is determined, the functional importance of each interaction will be probed using stable cell lines expressing a transport-null disease allele of ANT1; and both a murine model and cell lines of the CL-based cardiomyopathy, Barth syndrome. Results from this aim will provide novel insight into the physiological importance of this critical component of OXPHOS for diverse mitochondrial functions. The second specific aim will determine the role of CL in establishing the interactome of the extended ADP/ATP carrier family. Specifically, the complex assembly of endogenous ANT2 will be ascertained in two CL-deficient mammalian cell models. In addition, the complex assembly of all four human ANT isoforms and two other yeast AAC isoforms will be determined in CL-null yeast. Ultimately, the high sequence homology between AAC isoforms will facilitate efforts to determine if Aac2p contains specific CL binding motifs and if so, define the minimal amino acid requirements. This information will in turn be used to define the relative importance of Aac2p-CL to overall OXPHOS efficiency. Finally, the third aim will biochemically interrogate the interaction between Aac2p and the respiratory supercomplex with the ultimate goal of defining the motifs within Aac2p responsible for this association. In addition, how this association promotes optimal OXPHOS will be dissected focusing on both sides of the interaction using transport-active, interaction-null and transport-null, interaction-active Aac2p variants. By defining the contributio of Aac2p- respiratory supercomplex to optimal mitochondrial function, results from this aim will provide keen insight into multiple OXPHOS disorders. Results from this application will significantly impact our understanding of the consequences of alterations in the ANT interactome that may occur due to mutations in ANT and/or perturbations in CL metabolism. In turn, a greater understanding of basic mechanisms contributing to cardiovascular disease, the number one cause of death in the United States, will be obtained.
描述(申请人提供):ADP/ATP载体/腺嘌呤核苷酸转位酶(酵母AAC=哺乳动物ANT)介导1:1 ADP进入线粒体基质和ATP离开线粒体基质的交换,因此是氧化磷酸化(OXPHOS)所必需的。最近,我们证明了酿酒酵母中主要的ADP/ATP载体Aac2p物理上与呼吸超复合体有关,但仅在含有独特的磷脂心磷脂(CL)的线粒体膜上。ANT1缺陷和突变与包括肥厚性心肌病在内的多种疾病有关。此外,CL代谢改变引起的多种病理改变包括遗传性和糖尿病心肌病。鉴于CL对Aac2p相互作用组的关键作用,我们假设依赖CL的ADP/ATP载体相互作用组代表着由于CL代谢改变而导致的多种疾病状态下线粒体的“阿喀琉斯之踵”。第一个特定目标的目标是确定哺乳动物蚂蚁的结合伙伴。一旦确定了相互作用蛋白的清单,将使用表达ANT1转运缺失疾病等位基因的稳定细胞系,以及基于CL的心肌病Barth综合征的小鼠模型和细胞系来探讨每个相互作用的功能重要性。这一目标的结果将为了解OXPHOS的这一关键成分对不同线粒体功能的生理重要性提供新的见解。第二个特定目标将决定CL在建立扩展的ADP/ATP载体家族的相互作用组中的作用。具体地说,内源性ANT2的复杂组装将在两个CL缺乏的哺乳动物细胞模型中确定。此外,所有四种人类ANT亚型和另外两种酵母AAC亚型的复杂组装将在CL-零酵母中确定。最终,AAC亚型之间的高度序列同源性将有助于确定Aac2p是否包含特定的CL结合基序,如果包含,则定义最低氨基酸需求。这一信息将被用来定义Aac2p-CL对OXPHOS整体效率的相对重要性。最后,第三个目标将以生化方式询问Aac2p和呼吸超复合体之间的相互作用,最终目标是确定Aac2p中负责这种联系的基序。此外,这种关联如何促进最佳OXPHOS将被剖析,重点放在使用传输活跃的、交互作用无效的和传输无效的、交互作用活跃的Aac2p变体的交互作用的两个方面。通过确定Aac2p-呼吸超复合体对最佳线粒体功能的贡献,这一目标的结果将为多种OXPHOS疾病提供敏锐的洞察力。这一应用的结果将显著影响我们对由于ANT突变和/或CL代谢扰动而可能发生的蚂蚁相互作用组改变的后果的理解。反过来,将获得对心血管疾病的基本机制的更多了解,心血管疾病是美国的头号死亡原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Michael Claypool其他文献
Steven Michael Claypool的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Michael Claypool', 18)}}的其他基金
Endoplasmic reticulum-assisted mitochondrial precursor biogenesis and quality control
内质网辅助线粒体前体生物发生和质量控制
- 批准号:
10748025 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
An intimate and multifaceted partnership: cardiolipin and the mitochondrial ADP/ATP carrier
亲密且多方面的伙伴关系:心磷脂和线粒体 ADP/ATP 载体
- 批准号:
10604895 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Mitochondrial phosphatidylethanolamine metabolism
线粒体磷脂酰乙醇胺代谢
- 批准号:
10389237 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Mitochondrial phosphatidylethanolamine metabolism
线粒体磷脂酰乙醇胺代谢
- 批准号:
10303279 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Mitochondrial phosphatidylethanolamine metabolism
线粒体磷脂酰乙醇胺代谢
- 批准号:
10393989 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Cardiolipin and the mitochondrial ADP/ATP carrier interactome
心磷脂和线粒体 ADP/ATP 载体相互作用组
- 批准号:
8789382 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Cardiolipin and the mitochondrial ADP/ATP carrier interactome
心磷脂和线粒体 ADP/ATP 载体相互作用组
- 批准号:
8992907 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别: