Deconvoluting Redox Biology with Targeted Chemistry

用靶向化学对氧化还原生物学进行解卷积

基本信息

  • 批准号:
    8749778
  • 负责人:
  • 金额:
    $ 229.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-30 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Redox regulation is a phenomenon in which signals are relayed through oxidative and electrophilic modifications of specific redox-responsive proteins. These chemical events in turn orchestrate unique cytoprotective responses downstream. The deregulation of redox signaling pathways underlies many human diseases, including cancers, Alzheimer's, and cardiovascular disorders. However, the links between disease and individual redox signaling events remain shrouded in mystery. Currently, decoding the consequences of redox-linked modifications of specific proteins in cells induced by a given reactive small molecule is impossible. Conventional strategies limited to whole-cell bathing with reactive entities target simultaneously many, if not most, re- dox-sensitive proteins in cells. Although these "multihit" approaches model oxidative stress, they do not allow study of physiological redox signaling. My laboratory has developed a chemistry-driven innovation-targetable reactive electrophiles and oxidants (T-REX)-ultimately aimed at directly linking individual downstream biological responses to the chemical redox alteration of specific target proteins. T-REX mimics endogenous signaling, enabling selective and spatiotemporally controlled perturbation of any redox-responsive protein in cells with any reactive entity. Toward this ultimate goal, we recently showed proof of concept in which ligand-directed intramolecular delivery enabled selective targeting of a bioactive lipid electrophile, 4-hydroxynonenal (HNE), to two distinct redox-responsive proteins of biomedical interest in living cells. We herein exploit T-REX to probe mechanistic relationships between specific protein-electrophile perturbation and downstream signal propagation within a major disease-implicated redox signaling cascade. The proposed experiments will (1) profile the target-specific mechanisms by which HNE and analogous electrophiles operate in cells, (2) define the extent to which physiologic HNEylation prompts response in an otherwise native cell, and (3) pinpoint specific residues of the upstream target genuinely responsible for electrophile sensing. A multidisciplinary combination of synthetic chemistry, chemical biology, mechanistic biochemistry, mammalian cell biology and structural biology approaches will be used. Success will establish T-REX as the first chemical biology platform capable of mimicking non-enzyme-mediated posttranslational modifications in redox signaling. The utility of T-REX is far reaching: the strategy described herein can perturb any disease-implicated redox-responsive protein with any bioactive small-molecule inducer such that sophisticated redox-information-processing mechanisms within individual redox-modulated pathways can be clearly understood. T-REX is an ambitious yet transformative approach to understanding redox regulation. As with phosphoregulatory pathways wherein mechanistic understanding of temporal dynamics within individual phosphoryl transfer events has yielded multiple medical breakthroughs, T-REX strategy has the same long-term potential in impacting modern biomedical research.
描述(申请人提供):氧化还原调节是通过特定氧化还原反应蛋白的氧化和亲电修饰来传递信号的一种现象。这些化学事件反过来又在下游协调独特的细胞保护反应。氧化还原信号通路的失调是许多人类疾病的基础,包括癌症、阿尔茨海默氏症和心血管疾病。然而,疾病和个体氧化还原信号事件之间的联系仍然笼罩在神秘之中。目前,破译细胞中特定蛋白质由特定活性小分子引起的氧化还原连接修饰的后果是不可能的。传统的策略局限于用活性物质进行全细胞沐浴,同时针对细胞中的许多(如果不是大多数)氧化还原敏感蛋白。尽管这些“多次打击”的方法模拟了氧化应激,但它们不允许研究生理氧化还原信号。我的实验室开发了一种化学驱动的创新-靶向反应性亲电剂和氧化剂(T-REX)-最终旨在将个别下游生物反应与特定目标蛋白质的化学氧化还原改变直接联系起来。T-REX模拟内源性信号,使具有任何反应实体的细胞中的任何氧化还原反应蛋白能够选择性和时空控制的扰动。为了实现这一最终目标,我们最近展示了配体导向的分子内递送能够选择性地靶向生物活性脂电泳体4-羟基壬烯醛(HNE)到活细胞中两种不同的氧化还原反应蛋白的概念证明。在这里,我们利用T-REX来探索在重大疾病相关的氧化还原信号级联中特定的蛋白质电泳谱扰动和下游信号传播之间的机制关系。拟议的实验将(1)描述HNE和类似的亲电体在细胞中操作的靶标特异性机制,(2)定义生理性HNE化在其他天然细胞中促进反应的程度,以及(3)精确定位真正负责电泳性传感的上游靶标的特定残基。将使用合成化学、化学生物学、机械生物化学、哺乳动物细胞生物学和结构生物学方法的多学科组合。成功将使T-REX成为第一个能够模拟氧化还原信号中非酶介导的翻译后修饰的化学生物学平台。T-REX的用途是深远的:这里描述的策略可以用任何生物活性的小分子诱导剂扰乱任何与疾病相关的氧化还原反应蛋白,这样就可以清楚地理解单个氧化还原调节途径中复杂的氧化还原信息处理机制。T-REX是理解氧化还原监管的一种雄心勃勃但具有变革性的方法。在光调节途径中,对单个磷酸转移事件中的时间动力学的机械性理解已经产生了多项医学突破,T-REX策略在影响现代生物医学研究方面具有同样的长期潜力。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.
  • DOI:
    10.1021/ja5084249
  • 发表时间:
    2015-01-14
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Parvez, Saba;Fu, Yuan;Li, Jiayang;Long, Marcus J. C.;Lin, Hong-Yu;Lee, Dustin K.;Hu, Gene S.;Aye, Yimon
  • 通讯作者:
    Aye, Yimon
Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3.
  • DOI:
    10.1038/s41589-018-0113-5
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Fu Y;Long MJC;Wisitpitthaya S;Inayat H;Pierpont TM;Elsaid IM;Bloom JC;Ortega J;Weiss RS;Aye Y
  • 通讯作者:
    Aye Y
Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition.
克拉屈滨和氟达拉滨核苷酸诱导不同的六聚体,定义了可逆 RNR 抑制的常见模式。
  • DOI:
    10.1021/acschembio.6b00303
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wisitpitthaya,Somsinee;Zhao,Yi;Long,MarcusJC;Li,Minxing;Fletcher,ElaineA;Blessing,WilliamA;Weiss,RobertS;Aye,Yimon
  • 通讯作者:
    Aye,Yimon
Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling.
获得正确的握力?
  • DOI:
    10.1089/ars.2019.7894
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Long,MarcusJC;Wang,Lingxi;Aye,Yimon
  • 通讯作者:
    Aye,Yimon
Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities.
  • DOI:
    10.1039/d0cb00041h
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Long MJC;Zhao Y;Aye Y
  • 通讯作者:
    Aye Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yimon Aye其他文献

Yimon Aye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了