Nitric Oxide Regulation of Inflammatory Responses and Gene Expression
一氧化氮调节炎症反应和基因表达
基本信息
- 批准号:8952789
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdult Respiratory Distress SyndromeAgonistAmericanAnti-Inflammatory AgentsAnti-inflammatoryApoptosisAscaridilAtherosclerosisBindingBloodBlood VesselsCarbon MonoxideCell CycleCell Cycle ArrestCellsChestCoupledCyclic AMPCyclic AMP-Dependent Protein KinasesCyclic GMPCytoprotectionDominant-Negative MutationDoseDown-RegulationElementsEndothelial CellsEndotheliumEventFree RadicalsG Protein-Coupled Receptor SignalingGasesGene ExpressionGene Expression RegulationGenesGenomicsHalf-LifeHealthHumanHypoxiaImmune Response GenesImmunityImmunosuppressionIn VitroIndiumInflammationInflammatoryInflammatory ResponseInformatinInjuryInterleukin-8InvestigationLeukocytesLigandsLinkLung TransplantationMAP Kinase GeneMAPK14 geneMAPK3 geneMediatingMessenger RNAMicroarray AnalysisMolecularMolecular WeightMuscle TonusMutationMyocardial dysfunctionNF-kappa BNOS2A geneNatureNitric OxideNucleic AcidsOligonucleotide MicroarraysOutcomePPAR gammaPathway interactionsPeroxisome Proliferator-Activated ReceptorsPhosphorylationPhosphotransferasesPlatelet aggregationPlayPreparationProductionProtein BindingProteinsPulmonary HypertensionRattusReceptor SignalingRegulationReporter GenesReportingRepressionResearchRoleSP1 geneSepsisSeptic ShockShockSignal PathwaySignal TransductionSignal Transduction PathwaySimulateSiteSmooth MuscleSocietiesSoluble Guanylate CyclaseStressSuperoxidesTNF geneTestingTherapeuticTissuesToxic effectTranscriptTranscription Factor AP-1TranslationsU937 CellsVascular DiseasesVasodilator AgentsWorkZincabstractinganaloganthrax lethal factorbasedrug developmenthuman NOS3 proteinimprovedinhaled nitric oxideinjuredneutrophilprogramspromoterresearch studyresponse
项目摘要
In addition to upregulating TNF production (J Immunol 1994; Blood 1997), NO was found to modulate IL-8 mRNA levels and IL-8 production in human neutrophil preparations (J Infect Dis, 1998).
Investigation of TNF regulation by NO resulted in the description of a cGMP-independent cAMP/SP1 signaling pathway (J Biol Chem 1997; J Biol Chem, 1999; J Biol Chem, 2003). For TNF, an upstream AP1 site coupled to the Sp1 binding sequence serves as a molecular switch, the presence of which reverses the polarity of NO responses. Mutation of the AP1 site in the proximal TNF promoter converts the NO effect from up to down-regulation. This latter promoter configuration is responsible for NO suppression of eNOS expression.
The IL-8 promoter lacks a canonical Sp1 site. Unlike TNF, IL-8 regulation by NO is both cGMP and cAMP-independent. NO activation of p38 MAPK was shown to stabilize IL-8 mRNA via altered protein binding to AU-rich elements in its mRNA 3UTR (J Leuk Biol, 2004).
An oligonucleotide microarray analysis in differentiated U937 cells identified more than 100 additional NO regulated genes (BMC Genomics, 2005). NO coordinated a highly integrated program of cell cycle arrest through p38 MAPK stabilization of p21 mRNA, a master regulator of the cell cycle ((J Biol Chem, 2007).
Next, transcript stabilization by NO was investigated in human THP-1 cells using microarrays (Nucleic Acids Research, 2006). NO stabilization of mRNA, but suppression of translation was associated with CU-rich elements (CURE) in target transcripts and mediated by activation of ERK1/2 and the binding of hnRNP proteins to mRNA.
Both NO and peroxisome proliferator-activated receptors (PPARs) protect the endothelium and regulate its function. In a crosstalk signaling pathway, PPARgamma was activated by NO through a p38 MAPK dependent signal transduction pathway (FASEB J, 2007). This mechanism may contribute to the anti-inflammatory and cytoprotective effects of NO in the vasculature.
While NO up-regulated IL-1beta and TNFalpha, CO was found to decrease the expression of both. Using microarrays, early-immediate transcripts were induced by LPS and suppressed by CO (PLoS One 2009). CO blocked proximal events in NF-kappaB signal transduction, broadly suppressing inflammation. In acute respiratory distress syndrome (ARDS), combining clinically tolerated, low doses of inhaled NO and CO may have therapeutic advantages over either gas alone.
As noted in our previous work, NO activates MAPK pathways and enhances inflammatory responses, effects that might counteract the toxicity and immune suppression of anthrax lethal toxin (LeTx). Furthermore, NO has been shown to interact with and alter the activity of other zinc-containing proteins. The ability of NO to inactivate LF through tryrosine nitrosylation was demonstrated in vitro. In rats, 3-morpholinosydnoime (SIN-1), a NO and superoxide donor, was shown to inactivate LeTx (American Thoracic Society, abstracts 2012 and 2014 ).
Preliminary experiments have indicated that CO may activate stress kinase pathways through a G-protein coupled receptor signaling pathway. Experiments are planned to further test this hypothesis.
Work demonstrating that NO/p38 MAPK activates PPARgamma was extended using PPRE reporter genes, NOS2 induction and p38 MAPK dominant negative mutant expression. Both NO and optimal PPARgamma ligand activation of PPARgamma signaling were associated with p38 MAPK phosphorylation. The role of p38 MAPK in ligand/agonist activation of PPARgamma was also shown in endothelial cells. GPR40 and PPARγ, linked by p38 MAPK and PGC1α, were found to function as an integrated two-receptor signal transduction pathway, a finding with implications for rational drug development (submitted 2014).
除了上调TNF产生(J Immunol 1994; Blood 1997)之外,还发现NO调节人中性粒细胞制剂中IL-8 mRNA水平和IL-8产生(J Infect Dis,1998)。
NO对TNF调节的研究导致描述了cGMP非依赖性cAMP/SP1信号传导途径(J Biol Chem 1997; J Biol Chem,1999; J Biol Chem,2003)。对于TNF,与Sp1结合序列偶联的上游AP 1位点充当分子开关,其存在逆转NO反应的极性。 近端TNF启动子中的AP 1位点的突变将NO效应从上调转换为下调。后一种启动子构型负责eNOS表达的NO抑制。
IL-8启动子缺乏典型的Sp1位点。与TNF不同,NO对IL-8的调节是cGMP和cAMP独立的。显示p38 MAPK的NO活化通过改变蛋白质与其mRNA 3UTR中富含AU的元件的结合来稳定IL-8 mRNA(J勒克Biol,2004)。
在分化的U937细胞中进行的寡核苷酸微阵列分析鉴定了超过100种另外的NO调节基因(BMC Genomics,2005)。NO通过p21 mRNA的p38 MAPK稳定化协调细胞周期停滞的高度整合的程序,p21 mRNA是细胞周期的主要调节物(J Biol Chem,2007)。
接下来,使用微阵列在人THP-1细胞中研究NO对转录物的稳定性(Nucleic Acids Research,2006)。mRNA的NO稳定,但翻译的抑制与靶转录物中的富含Cu的元件(CURE)相关,并通过ERK 1/2的激活和hnRNP蛋白与mRNA的结合介导。
NO和过氧化物酶体增殖物激活受体(PPARs)都能保护内皮细胞并调节其功能。在串扰信号传导途径中,PPARgamma通过p38 MAPK依赖性信号转导途径被NO激活(FASEB J,2007)。这一机制可能有助于NO在血管中的抗炎和细胞保护作用。
而NO上调IL-1 β和TNF α的表达,CO被发现降低两者的表达。使用微阵列,早期即时转录物由LPS诱导并由CO抑制(PLoS One 2009)。CO阻断了NF-κ B信号转导的近端事件,广泛抑制炎症。在急性呼吸窘迫综合征(ARDS)中,联合使用临床耐受的低剂量吸入NO和CO可能比单独使用任何一种气体具有治疗优势。
正如我们以前的工作所指出的,NO激活MAPK通路并增强炎症反应,这种作用可能会抵消炭疽致死毒素(LeTx)的毒性和免疫抑制。此外,NO已被证明与其他含锌蛋白相互作用并改变其活性。在体外实验中证明了NO通过酪氨酸亚硝酰化作用抑制LF的能力。 在大鼠中,NO和超氧化物供体3-吗啉代肟(SIN-1)显示出可抑制LeTx(美国胸科学会,摘要2012和2014)。
初步实验表明,CO可能通过G蛋白偶联受体信号通路激活应激激酶通路。 实验计划进一步验证这一假设。
使用PPRE报告基因、NOS 2诱导和p38 MAPK显性负突变体表达,证明NO/p38 MAPK激活PPARgamma的工作得以扩展。NO和最佳的PPARgamma信号的PPARgamma配体激活都与p38 MAPK磷酸化有关。p38 MAPK在PPARgamma的配体/激动剂活化中的作用也在内皮细胞中显示。通过p38 MAPK和PGC1连接的GPR40和PPAR被发现作为一个整合的双受体信号转导途径发挥作用,这一发现对合理的药物开发具有意义(2014年提交)。γα
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT L DANNER其他文献
ROBERT L DANNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT L DANNER', 18)}}的其他基金
Functional Genomics of Inflammation and Critical Illness
炎症和危重疾病的功能基因组学
- 批准号:
9549437 - 财政年份:
- 资助金额:
-- - 项目类别:
Preclinical and Clinical Investigations of Severe Infection and Critical Illness
严重感染和危重疾病的临床前和临床研究
- 批准号:
10923694 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6564818 - 财政年份:2001
- 资助金额:
-- - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6410976 - 财政年份:2000
- 资助金额:
-- - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6418789 - 财政年份:2000
- 资助金额:
-- - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6302122 - 财政年份:1999
- 资助金额:
-- - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6309780 - 财政年份:1999
- 资助金额:
-- - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6109540 - 财政年份:1998
- 资助金额:
-- - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6265845 - 财政年份:1998
- 资助金额:
-- - 项目类别: