Array Tomography Visualization and Analysis Software
阵列断层扫描可视化和分析软件
基本信息
- 批准号:8780498
- 负责人:
- 金额:$ 29.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-22 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAlzheimer&aposs DiseaseArchitectureBiological Neural NetworksBrainCell NucleusColorCommunitiesComplexComputer softwareComputersDataData AnalysesData SetDetectionDevelopmentDimensionsDiseaseDisease ProgressionDue ProcessGenerationsHumanImageImageryIndividualJavaLibrariesLight MicroscopeLocationMetadataMethodsMetricMolecularNerve DegenerationNeurodegenerative DisordersNeurosciencesNoiseOperating SystemOutputParkinson DiseasePathologyPhasePopulationProcessProteomicsProtocols documentationPublicationsQuality ControlRelative (related person)ResearchResearch PersonnelResolutionRunningSamplingServicesSimulateSpeedSpottingsStagingStem cellsStretchingSynapsesSystemTechnologyTherapeuticThree-Dimensional ImageTissuesUncertaintyValidationVisualVisualization softwareanticancer researchassay developmentbasecomputing resourcesdensitydesigneffective therapyfallsheuristicsimage processingimaging modalityinterestneural circuitpublic health relevancereconstructionstatisticssuccesstechnology developmenttomographytoolvibration
项目摘要
DESCRIPTION (provided by applicant): Neurodegenerative diseases are among the most expensive, disruptive, and least well treated of human maladies, arguably because they are not well understood. Array Tomography is a new method for tissue imaging with resolution in all three dimensions sufficient to resolve individual synapses and provide quantitative characterization of multiple (currently ~40) molecular constituents, throughout large samples. Array Tomography imaging data enable description of neural networks in the context of the three-dimensional tissue architecture. We believe such data will enable researchers to begin to comprehend the proper function of neural circuits and, importantly, to begin to understand how it is that the various neurodegenerative processes present and progress. Array Tomography is, however, complex and expensive, and has been used in relatively few studies following the first publication in 2007 (Micheva and Smith, 2007). Aratome is currently offering Array Tomography services to the research community. The present application proposes the development of a software application that automates the assembly of the multi- channel image volumes and provides tools to analyze those data. Assembling and analyzing data constitute the current bottleneck in producing and using high quality Array Tomography data. The package will be used internally and made available as a product to the research community.
描述(由申请人提供):神经退行性疾病是人类疾病中最昂贵、最具破坏性和治疗效果最差的疾病之一,可以说是因为它们没有得到很好的理解。阵列断层扫描是一种新的组织成像方法,在所有三个维度上的分辨率足以解析单个突触,并在整个大样本中提供多个(目前约40个)分子成分的定量表征。阵列层析成像数据能够在三维组织结构的背景下描述神经网络。我们相信这些数据将使研究人员能够开始理解神经回路的正确功能,更重要的是,开始理解各种神经退行性过程是如何出现和发展的。然而,阵列层析成像复杂且昂贵,自2007年首次发表以来,在相对较少的研究中使用(Micheva和Smith, 2007)。Aratome目前为研究界提供阵列断层扫描服务。本申请提出了一种软件应用程序的开发,该软件应用程序可自动组装多通道图像卷并提供分析这些数据的工具。数据的组装和分析是目前生产和使用高质量阵列层析成像数据的瓶颈。该包将在内部使用,并作为产品提供给研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Peter Lenzi其他文献
David Peter Lenzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.64万 - 项目类别:
Continuing Grant