Developing and Validating a Veterans Affairs Cardiac Risk Score
制定和验证退伍军人事务部心脏风险评分
基本信息
- 批准号:8397772
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsAtherosclerosisBenefits and RisksCardiacCardiovascular DiseasesCardiovascular systemCaringCause of DeathCerebrovascular DisordersCessation of lifeClinicalClinical DataClinical ManagementCodeCommunicationCommunitiesComplicationComputerized Medical RecordComputersCoronary heart diseaseCurrent Procedural Terminology CodesDataData QualityData SetDecision AidDecision AnalysisDecision MakingDevelopmentDiscriminationGoalsGuidelinesHealthcareICD-9IndividualInpatientsLaboratoriesMachine LearningManualsMeasuresMedicalMethodsModelingMorbidity - disease rateMyocardial InfarctionNatural Language ProcessingOutcomeOutpatientsPatientsPerformancePharmacy facilityPopulationPreventionPublic Health InformaticsResearchRiskRisk AssessmentRisk EstimateRisk FactorsRisk ReductionRisk-Benefit AssessmentSourceSpecialistStrokeSurveysSurvival AnalysisTechniquesTechnologyTimeValidationVeteransVisitWorkbasecerebrovascularclinical decision-makingcohortdata miningexperienceforestindexingmortalitynovelpatient orientedpatient populationpreferencepreventroutine practicestatisticstooltreatment planningweb based interface
项目摘要
DESCRIPTION (provided by applicant):
The central goal of patient-centered medical care is to tailor treatment agreements toward individual patient risks, benefits, and preferences. This, however, cannot be possible without the ability to accurately predict an individual patient's risk of developing major medical illness. Whie the use of multivariable risk/benefit prediction tools to individually tailor treatments could grealy increase treatment precision, tools to facilitate such improvements in VA are lacking. For cardio- and cerebrovascular (CCV) disease, the leading cause of morbidity and mortality in the US, current risk prediction tools have substantial shortcomings, including requiring manual entry of risk factor information, being developed on and calibrated to patient populations quite different from those served by VHA, failing to utilize new data-mining techniques, and failing to utilize the
full spectrum of clinical data available in VA's electronic medical record (VA EMR). This project will focus on primary cardiovascular prevention in Veterans. We will develop a VA-based risk prediction score and, using that score, novel clinical algorithms to tailor clinical decision-makin and risk/benefit communication to individual Veterans. We propose a 3.5-year project using 10-years of centrally available VA EMR data (2001 thru 2010) supplemented by the National Death Index, chart review, Office of Quality and Performance data, and non-VA cohort data to develop and validate the Veterans Affairs Risk Score (VARS). Our study has two specific aims: 1. To develop and assess two competing approaches to developing VA EMR- derived CCV risk prediction tools, using standard regression (REG) models and machine learning (ML) models. 2. To compare the accuracy and clinical impact of these VA EMR-derived CCV risk prediction tools (the REG and ML models) to each other and to commonly-used risk prediction models developed outside of VA, such as the Framingham and Euro SCORE risk tools. In addition to traditional measures of discrimination (such as the C statistic), potential improvements in clinica decision-making and patient outcomes using VARS will be assessed using reclassification analysis and the development of patient-based clinical decision analyses. Our methods will use national VA data to create a 10-year longitudinal cohort to develop the VA-specific CCV risk tool. We will extract laboratory and pharmacy data from the DSS National Data Extracts; data about outpatient visits, inpatient use, ICD-9 codes, and CPT codes from the SAS Medical Datasets; clinical measures from the Corporate Data Warehouse; and cause of death from the National Death Index. The REG models will be developed using Weibull survival analysis and the ML models will primarily use random forest ML methods (Aim 1). The models will be validated with VA-CMS datasets and National Death Index data. The data will be augmented with results from natural language processing tools. Data quality will be assessed with chart review and data from the Survey on Health Care Experiences of Patients (SHEP) and the Atherosclerosis Risk in Communities (ARIC) study. Aim 2 will use modern validation techniques, including risk reclassification analysis, to assess the reliability and accuracy of the new scores.
We will also develop patient-based clinical decision analyses that will assess the risks and benefits of decisions. This work is the prerequisite research needed in order to develop automated tools, guidelines, and quality assessments that can be integrated into the VA EMR or a web-based interface (such as MyHealtheVet), helping clinicians and patients to optimize and personalize CCV risk reduction treatment decisions in the outpatient setting.
描述(由申请人提供):
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CES1-Triggered Liver-Specific Cargo Release of CRISPR/Cas9 Elements by Cationic Triadic Copolymeric Nanoparticles Targeting Gene Editing of PCSK9 for Hyperlipidemia Amelioration.
- DOI:10.1002/advs.202300502
- 发表时间:2023-07
- 期刊:
- 影响因子:15.1
- 作者:Zhao, Yunfei;Li, Yun;Wang, Fan;Gan, Xuelan;Zheng, Tianye;Chen, Mengyue;Wei, Li;Chen, Jun;Yu, Chao
- 通讯作者:Yu, Chao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RODNEY A. HAYWARD其他文献
RODNEY A. HAYWARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RODNEY A. HAYWARD', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant