Functional organization of a reticulospinal motor connectome
网状脊髓运动连接组的功能组织
基本信息
- 批准号:8760864
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAxonBehaviorBehavioralBrainBrain StemChestComplexContralateralDiseaseFlexorFoundationsFunctional disorderGenerationsGlutamate TransporterGoalsHeterogeneityHindlimbImageIn VitroIndividualInjuryInterneuronsInvestigationKnowledgeLateralLimb structureLocomotionMammalsMedialMotorMotor ActivityMotor NeuronsMotor outputMovementMusMuscleNeuronsNeurotransmittersOperating SystemOutputParalysedPathway interactionsPatternPeripheralPhasePhenotypePlayPopulationPreparationRecoveryRecruitment ActivityRehabilitation therapyResearchResearch PersonnelResolutionRestRoleSensorySourceSpinalSpinal CordSpinal cord injuryStrokeSynapsesSystemTechniquesTechnologyTestingTraining ProgramsTransgenic Organismsconditioningdesignfunctional groupimprovedin vivoinsightmotor controlmotor function recoveryneural circuitnovel strategiesoptical imagingpublic health relevancespinal cord and brain injurytransmission process
项目摘要
DESCRIPTION (provided by applicant): A central challenge in the field of motor control is to understand how descending systems control spinal cord interneurons (INs). However, descending axons target thousands of spinal INs and form complex neural circuits. This complexity limits the usefulness and efficiency of conventional investigation techniques. To solve this roadblock and accelerate progress, we recently developed alternative approaches that transfer functional connectivity studies to the in vitro mouse. We use optical imaging to record individual and population neuronal activity following stimulation of subcortical descending systems. This novel approach allows us to study synaptic connections in descending networks with an efficiency and throughput that has not been possible previously in mammals. In this proposal, we focus on a major player in motor coordination, the reticulospinal (RS) descending system. We propose to identify the functional connections between RS neurons and a population of commissural INs with descending axonal projections called dCINs. CINs are strategically interposed between RS input and motor output to play an important role in locomotor rhythm generation and interlimb coordination. However, they are heterogeneous with respect to transmitter phenotype, input-output connectivity and functional role during movement. We have begun to elucidate organizational principles of RS-dCIN system and made two important preliminary findings. We found; (i) two distinct groups of medullary RS neurons that differentially activate axial and hindlimb motoneurons, and (ii) three subpopulations of dCINs that respond to either RS group or to both. Thus, RS neurons are organized in discrete groups that recruit dCINs selectively. Here, in Aim 1, we propose to test two forms of selectivity that RS
neurons may use to recruit dCINs. First, we will test segmental selectivity by taking advantage of the known spinal segmental differences in composition of axial, flexor and extensor motoneurons. Then, we will test transmitter phenotype selectivity using transgenic approaches. In Aims 2 and 3, we will determine the extent to which RS-dCIN recruitment depends on the excitability and behavioral state of the spinal motor network. Successful completion of these aims will significantly advance our understanding of the functional organization of the RS system both during quiescence and during the active engagement of a complex motor behavior. Our long-term goal is to define organizational principles by which brainstem descending systems control motor output via spinal interneurons. Such knowledge will undoubtedly provide greater insight into circuit dysfunction after injury and aid identify rational strategies for moto recovery.
描述(由申请人提供):运动控制领域的一个核心挑战是了解下行系统如何控制脊髓中间神经元(IN)。然而,下行轴突瞄准数千个脊髓IN并形成复杂的神经回路。这种复杂性限制了常规调查技术的效用和效率。为了解决这一障碍并加快进展,我们最近开发了将功能连接研究转移到体外小鼠的替代方法。我们使用光学成像记录个体和群体神经元的活动刺激皮层下下行系统。这种新的方法使我们能够研究下行网络中的突触连接,其效率和吞吐量在哺乳动物中以前是不可能的。在这个建议中,我们专注于运动协调的主要参与者,网状脊髓(RS)下行系统。我们建议,以确定RS神经元和人口连合IN与下行轴突预测称为dCINs之间的功能连接。CINs策略性地插入RS输入和运动输出之间,在运动节律产生和肢体间协调中发挥重要作用。然而,它们在运动过程中的递质表型、输入-输出连接和功能作用方面是异质的。我们已经开始阐明RS-dCIN系统的组织原理,并取得了两个重要的初步发现。我们发现,(i)两组不同的延髓RS神经元,差异激活轴和后肢运动神经元,和(ii)三个亚群的dCIN,响应RS组或两者。因此,RS神经元被组织成选择性募集dCIN的离散组。在这里,在目标1中,我们建议测试RS的两种形式的选择性
神经元可以用来募集dCIN。首先,我们将测试节段选择性利用已知的脊髓节段性差异的组成轴,屈和伸肌运动神经元。然后,我们将使用转基因方法测试递质表型选择性。在目标2和3中,我们将确定RS-dCIN募集依赖于脊髓运动网络的兴奋性和行为状态的程度。这些目标的成功完成将显着推进我们的RS系统的功能组织的理解,在安静期间,并在一个复杂的运动行为的积极参与。我们的长期目标是确定脑干下行系统通过脊髓中间神经元控制运动输出的组织原则。这些知识无疑将提供更深入的了解电路功能障碍后,受伤和援助确定合理的策略,摩托车恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marie-Claude Perreault其他文献
Marie-Claude Perreault的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marie-Claude Perreault', 18)}}的其他基金
Functional organization of a reticulospinal motor connectome
网状脊髓运动连接组的功能组织
- 批准号:
8845631 - 财政年份:2014
- 资助金额:
$ 34.13万 - 项目类别:
Functional organization of a reticulospinal motor connectome
网状脊髓运动连接组的功能组织
- 批准号:
9070008 - 财政年份:2014
- 资助金额:
$ 34.13万 - 项目类别:
Functional organization of a reticulospinal motor connectome
网状脊髓运动连接组的功能组织
- 批准号:
9275039 - 财政年份:2014
- 资助金额:
$ 34.13万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




