Feasibility Trial of a Problem-Solving Weight Loss Mobile Application
解决问题的减肥移动应用程序的可行性试验
基本信息
- 批准号:8734413
- 负责人:
- 金额:$ 20.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceBehavior TherapyBehavioralBody Weight decreasedClinicalCollaborationsComputersCounselingCrowdingDataDatabasesDevelopmentEnvironmentEventExerciseFeedbackFemaleFocus GroupsFrequenciesGoalsGroup MeetingsIndividualInstitutesInterventionLogicMarket ResearchMarketingMassachusettsModelingModificationMonitorObesityOutcomeParticipantPatientsPersonsPhasePrincipal InvestigatorProblem SolvingProcessProfessional counselorProliferatingPsychologistQualitative ResearchRandomizedRelative (related person)ResearchResearch MethodologySamplingScheduleScientistSeriesSocial NetworkSolutionsTechnologyTestingTimeTreatment EfficacyUniversitiesVisitWeightWorkbasediabetes riskdiet and exerciseefficacy trialevidence basefollow-upinformation processinglifestyle interventionmedical schoolsmobile applicationpost interventionpreventprogramspublic health relevancerandomized trialresponseskillssocialtoolusabilityweb interfaceweight loss intervention
项目摘要
DESCRIPTION (provided by applicant): Lifestyle interventions, while effective at reducing weight and diabetes risk, are intensive (i.e., requiring 16 or more face-to-face visits) which has prevented widespread implementation. Mobile technology may reduce intervention intensity while preserving outcomes by assisting in the delivery of behavioral strategies, but very little research has explored this. Weight loss mobile applications are proliferating in the open market; however our work and others2 show that the range of evidence-based strategies addressed by these apps is narrow, primarily including self-monitoring, prompts, goal-setting, and sometimes a social network.3 A key strategy missing across apps in both the market and research is problem solving, an essential component of behavioral weight loss interventions.4 We propose to develop and test the feasibility of Smart Coach, a weight loss mobile application that includes common features such as self-monitoring, goal setting, and a social network, but even more importantly, an avatar-facilitated, idiographic problem solving feature that processes information intelligently to help patients identify solutions to their weight loss problems. We hypothesize tha Smart Coach when combined with a lower intensity (half the sessions) weight loss intervention will be more effective than a lower intensity weight loss intervention alone, with biggest differences observable after face-to- face visits end. Using a "crowd-sourcing" model, we will populate a database with problems and solutions via 1) expert-delivered problem solving sessions with a sample of obese participants trying to lose weight and 2) a pre-pilot test of the app. Using principles of "artificial intelligence" we will convert the algorithm of problem solving
counseling into the mobile application so that it may perform this strategy on its own, but based on expert and crowd-sourced information. We will then use a series of iterative steps involving qualitative research methods (usability testing, focus groups, and pre-piloting) to refine the tool A randomized pilot feasibility trial will test the feasibility and initial effects of the Smart Coah mobile application when paired with a shortened (8- week) behavioral weight loss intervention relative to a shortened behavioral weight intervention alone. Feasibility outcomes include frequency and duration of usage of the mobile app and each feature, recruitment, and retention. We will also do exploratory analyses comparing conditions on problem solving skills and weight loss at 8- and 16-weeks. Data will support a larger efficacy trial of a Smart Coach-assisted brief behavioral weight loss intervention relative to a brief behavioral weight loss intervention alone. Our overarching goal is to develop mobile technology that reduces the intensity of lifestyle interventions as far as possible while preserving weight loss outcomes, to ultimately broaden the reach to people and settings that currently have little access.
描述(由申请人提供):生活方式干预,虽然有效地降低体重和糖尿病风险,是密集的(即,需要16次或更多次面对面访问),这阻碍了广泛实施。移动的技术可能会降低干预强度,同时通过协助提供行为策略来保护结果,但很少有研究对此进行了探讨。减肥移动的应用在公开市场上激增;然而,我们的工作和其他人2表明,这些应用程序所解决的基于证据的策略范围很窄,主要包括自我监控,提示,目标设定,有时还包括社交网络。3市场和研究中的应用程序都缺少一个关键策略是解决问题,行为减肥干预的重要组成部分。4我们建议开发和测试智能教练的可行性,这是一种减肥移动的应用程序,包括自我监控,目标设定和社交网络等常见功能,但更重要的是,一个化身促进,具体的问题解决功能,智能地处理信息,以帮助患者确定他们的减肥问题的解决方案。我们假设智能教练与较低强度(一半的课程)减肥干预相结合时,将比单独的较低强度减肥干预更有效,在面对面访问结束后观察到的差异最大。使用“众包”模式,我们将通过1)专家提供的问题解决会议(具有尝试减肥的肥胖参与者的样本)和2)应用程序的预试点测试,用问题和解决方案填充数据库。使用“人工智能”的原则,我们将转换问题解决的算法
向移动的应用提供咨询,使得它可以自己执行该策略,但是基于专家和众包信息。然后,我们将使用一系列涉及定性研究方法(可用性测试,焦点小组和预试点)的迭代步骤来完善该工具。随机试点可行性试验将测试Smart Coah移动的应用程序与缩短的(8周)行为减肥干预配对时相对于单独缩短的行为减肥干预的可行性和初步效果。可行性结果包括移动的应用程序和每个功能的使用频率和持续时间、招募和保留。我们还将进行探索性分析,比较8周和16周时解决问题技能和减肥的情况。数据将支持一个更大的有效性试验的智能教练辅助简短的行为减肥干预相对于一个简短的行为减肥干预单独。我们的总体目标是开发移动的技术,尽可能降低生活方式干预的强度,同时保持减肥效果,最终扩大到目前几乎没有机会的人群和环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHERRY L. PAGOTO其他文献
SHERRY L. PAGOTO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHERRY L. PAGOTO', 18)}}的其他基金
A non-inferiority trial comparing synchronous and asynchronous remotely-delivered lifestyle interventions
比较同步和异步远程生活方式干预措施的非劣效性试验
- 批准号:
10719358 - 财政年份:2023
- 资助金额:
$ 20.73万 - 项目类别:
Building Habits Together: Feasibility trial of an integrated mobile and social network weight loss intervention
一起养成习惯:综合移动和社交网络减肥干预的可行性试验
- 批准号:
10058069 - 财政年份:2020
- 资助金额:
$ 20.73万 - 项目类别:
Building Habits Together: Feasibility trial of an integrated mobile and social network weight loss intervention
一起养成习惯:综合移动和社交网络减肥干预的可行性试验
- 批准号:
10250552 - 财政年份:2020
- 资助金额:
$ 20.73万 - 项目类别:
Building Habits Together: Feasibility trial of an integrated mobile and social network weight loss intervention
一起养成习惯:综合移动和社交网络减肥干预的可行性试验
- 批准号:
10466917 - 财政年份:2020
- 资助金额:
$ 20.73万 - 项目类别:
Society of Behavioral Medicine 2019 Annual Meeting & Scientific Sessions
行为医学学会2019年年会
- 批准号:
9755691 - 财政年份:2019
- 资助金额:
$ 20.73万 - 项目类别:
Get Social: Randomized Trial of a Social Network Delivered Lifestyle Intervention
社交:社交网络提供生活方式干预的随机试验
- 批准号:
9150616 - 财政年份:2015
- 资助金额:
$ 20.73万 - 项目类别:
Mentoring in mHealth and Social Networking Interventions for CVD Risk Reduction
减少 CVD 风险的移动医疗和社交网络干预措施的指导
- 批准号:
10215601 - 财政年份:2015
- 资助金额:
$ 20.73万 - 项目类别:
Mentoring in mHealth and Social Networking Interventions for CVD Risk Reduction
减少 CVD 风险的移动医疗和社交网络干预措施的指导
- 批准号:
10678774 - 财政年份:2015
- 资助金额:
$ 20.73万 - 项目类别:
Mentoring in mHealth and Social Networking Interventions for CVD Risk Reduction
减少 CVD 风险的移动医疗和社交网络干预措施的指导
- 批准号:
10442762 - 财政年份:2015
- 资助金额:
$ 20.73万 - 项目类别:
Mentoring in mHealth and Social Networking Interventions for CVD Risk Reduction
减少 CVD 风险的移动医疗和社交网络干预措施的指导
- 批准号:
9977611 - 财政年份:2015
- 资助金额:
$ 20.73万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 20.73万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 20.73万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 20.73万 - 项目类别:














{{item.name}}会员




