Computational Analysis of Microtubule Dynamics for Personalized Cancer Therapy
个性化癌症治疗的微管动力学计算分析
基本信息
- 批准号:8868262
- 负责人:
- 金额:$ 4.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAndrogen ReceptorBasic ScienceBehaviorBindingBiological MarkersBiologyCancer EtiologyCancer PatientCell NucleusCell physiologyCessation of lifeComputer AnalysisComputer AssistedComputer Vision SystemsComputersCoupledCytoskeletonDataData SetDependencyDiagnosisDiseaseDrug TargetingDynein ATPaseEventEyeFDA approvedFeedbackGene TargetingGenesGenetic TranscriptionGoalsGrowthHealthHomeostasisImageImage AnalysisIn VitroIndividualLabelLinkMalignant neoplasm of prostateMeasurableMeasuresMedicalMetastatic Prostate CancerMicroscopeMicrotubule PolymerizationMicrotubule StabilizationMicrotubulesModelingMotorNuclearOpticsOutcomePC3 cell linePaclitaxelPathway interactionsPatientsPatternPharmaceutical PreparationsPhasePhysiciansPolymersProcessPropertyProtein IsoformsProteinsRNA SplicingRenal Cell CarcinomaResearchResearch Project GrantsResistanceSchemeSecond Primary NeoplasmsTaxane CompoundTestingTherapeuticTimeTranscriptional RegulationTranslational ResearchTreatment EfficacyTubulinVariantWorkanticancer researchbasebehavior testcancer cellcancer therapycellular targetingchemotherapyclinical decision-makingclinically relevantdesigndisease phenotypedocetaxelin vivoinhibitor/antagonistinsightmalemathematical modelnovelprogramsprostate cancer cellreceptor bindingresponsetaxanetooltraffickingtranscription factortranscriptome sequencingtumor
项目摘要
DESCRIPTION (provided by applicant): Optimized optics and feedback-controlled microscope hardware permit efficient acquisition of large, high- quality image datasets. Computer-based analyses deliver fast processing of high volume of image data which manually cannot be accomplished. The most exciting contribution that computer vision systems can make to translational cancer research, however, is to give access to image-based information that is inaccessible by eye. Computer vision programs can be directly coupled to mathematical models that describe the relation between hidden, invisible processes and measurable image events. Changes in the behavior of hidden processes are thus detectable as changes in the image. This study envisages the use of such algorithms to obtain statistically representative results for the differential effects of each of the three FDA-approved taxanes on the microtubule cytoskeleton in prostate cancer (PC) cell lines. My previous work in basic research has demonstrated the ability of computer-based analysis of the microtubule (MT) cytoskeleton to distinguish between weak disease phenotypes and establish links to MT dynamics in renal cell carcinoma. Therefore, the proposed translational research project can impact clinical decision-making by equipping physicians for the first time with a computer-aided tool allowing the design of an effective personalized MT-targeting chemotherapy of metastatic PC patients. Metastatic PC is treated primarily by means of taxane-based chemotherapy with one of the three FDA- approved taxanes (paclitaxel, docetaxel and cabazitaxel). However, currently there is no way of selecting the taxane for chemotherapy based on the particular pattern of dynamic behavior of the MT cytoskeleton in individual patients. In addition, recent data have indicated that AR binds MTs in order to traffic to the nucleus and that there are several clinically relevant AR splice variants i metastatic PC patients. To date, there is no information available on the potential effects of wild
type or variant AR on MT dynamics and consequently no information on differential metastatic PC cell response to taxane treatment as a function of cellular AR content. Based on preliminary research, we hypothesize that there are inherent differences in tumor MT dynamics among individual PC patients, and that the presence of AR variants affects specific parameters of MT polymerization dynamics. If correct, this hypothesis has very significant implications for PC treatment. Because different microtubule-targeting drugs (even from within the same class like the taxanes) affect distinct parameters of MT dynamics, it is conceivable that we can match each drug with an individual tumor-specific "MT-dynamics signature" for maximum therapeutic efficacy.
描述(由申请人提供):优化的光学和反馈控制的显微镜硬件允许有效地获取大型,高质量的图像数据集。基于计算机的分析提供了人工无法完成的大量图像数据的快速处理。然而,计算机视觉系统对转化性癌症研究最令人兴奋的贡献是,它可以提供人眼无法获得的基于图像的信息。计算机视觉程序可以直接耦合到描述隐藏的、不可见的过程和可测量的图像事件之间关系的数学模型。因此,隐藏过程的行为变化可以作为图像的变化来检测。本研究设想使用这种算法来获得具有统计学代表性的结果,以说明fda批准的三种紫杉烷对前列腺癌(PC)细胞系微管细胞骨架的不同影响。我之前在基础研究方面的工作证明了微管(MT)细胞骨架的计算机分析能力,可以区分弱疾病表型,并建立肾细胞癌中微管(MT)动力学的联系。因此,拟议的转化研究项目可以影响临床决策,首次为医生配备计算机辅助工具,允许为转移性PC患者设计有效的个性化mt靶向化疗。转移性PC的治疗主要是紫杉醇为基础的化疗,使用FDA批准的三种紫杉醇(紫杉醇、多西紫杉醇和卡巴他赛)中的一种。然而,目前还没有办法根据个体患者MT细胞骨架的特定动态行为模式来选择紫杉烷进行化疗。此外,最近的数据表明,AR结合mt以运输到细胞核,并且在转移性PC患者中存在几种临床相关的AR剪接变异体。到目前为止,还没有关于野生动物潜在影响的信息
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandre Matov其他文献
Alexandre Matov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandre Matov', 18)}}的其他基金
Computational Analysis of Microtubule Dynamics for Personalized Cancer Therapy
个性化癌症治疗的微管动力学计算分析
- 批准号:
8526929 - 财政年份:2013
- 资助金额:
$ 4.7万 - 项目类别:
Computational Analysis of Microtubule Dynamics for Personalized Cancer Therapy
个性化癌症治疗的微管动力学计算分析
- 批准号:
8656952 - 财政年份:2013
- 资助金额:
$ 4.7万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Research Grant