Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics

从表观基因组学推断哺乳动物转录调控网络

基本信息

  • 批准号:
    8727613
  • 负责人:
  • 金额:
    $ 34.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-10 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Deciphering the transcriptional regulatory network (TRN) governing a biological process in mammalian systems is essential to our understanding of basic mechanisms underlying normal physiology as well as disease etiology. It is a daunting task because too many links in the TRN are unknown. The emergence of ChIP-chip and ChIP-seq technologies has enabled the mapping of the genome-wide binding sites of many transcription factors (TFs) known to be key regulators in a biological process. However, these two technologies are limited to the known regulators with ChIP-quality antibodies. We found that TF binding is often associated with a dynamic histone mark signature and can be computationally predicted from the genome-wide histone mark dynamics. Therefore, we hypothesize that with time-course nucleosome-resolution ChIP-seq of a few informative histone marks and RNA-seq data of gene expression, and effective computational modeling, we could infer the TRNs in mammalian biological processes. Specifically, we propose to develop effective computational algorithms to achieve Aim1: first, predict TF binding from nucleosome-resolution histone mark dynamics; second, identify target genes from TF binding, histone marks and gene expression profiles; and third, infers the TRN over a time course. We also propose to apply the above algorithms in two biological systems in Aim 2. One is the mouse myoblast cell line C2C12 differentiation into bone, fat, or muscle, and the other is the human apocrine breast cancer cell line MDA-MB-453 reversible reprogramming to epithelial cells with vitamin D treatment. Through time-course nucleosome-resolution histone mark ChIP-seq and RNA-seq profiling, we will computationally infer and experimentally validate the TRNs in these two systems.
描述(由申请人提供):破译哺乳动物系统中控制生物过程的转录调控网络(TRN)对于我们理解正常生理学和疾病病因学的基本机制至关重要。这是一项艰巨的任务,因为TRN中有太多的链路是未知的。ChIP-chip和ChIP-seq技术的出现使得能够对已知是生物过程中的关键调节因子的许多转录因子(TF)的全基因组结合位点进行定位。然而,这两种技术仅限于具有ChIP质量抗体的已知调节剂。我们发现TF结合通常与动态组蛋白标记签名相关,并且可以从全基因组蛋白标记动态计算预测。因此,我们假设,随着时间进程的核小体分辨率ChIP-seq的一些信息组蛋白标记和基因表达的RNA-seq数据,和有效的计算建模,我们可以推断哺乳动物生物过程中的TRN。具体来说,我们建议开发有效的计算算法,以实现目标1:第一,预测TF结合从核小体分辨率组蛋白标记动力学;第二,从TF结合,组蛋白标记和基因表达谱识别靶基因;第三,推断在一个时间过程中的TRN。我们还建议将上述算法应用于目标2中的两个生物系统。一个是小鼠成肌细胞系C2 C12分化成骨、脂肪或肌肉,另一个是人顶浆分泌乳腺癌细胞系MDA-MB-453在维生素D处理下可逆重编程为上皮细胞。通过时程核小体分辨组蛋白标记ChIP-seq和RNA-seq分析,我们将计算推断和实验验证这两个系统中的TRN。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cistrome Cancer: A Web Resource for Integrative Gene Regulation Modeling in Cancer.
  • DOI:
    10.1158/0008-5472.can-17-0327
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Mei S;Meyer CA;Zheng R;Qin Q;Wu Q;Jiang P;Li B;Shi X;Wang B;Fan J;Shih C;Brown M;Zang C;Liu XS
  • 通讯作者:
    Liu XS
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.
  • DOI:
    10.1186/s13059-014-0554-4
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Li W;Xu H;Xiao T;Cong L;Love MI;Zhang F;Irizarry RA;Liu JS;Brown M;Liu XS
  • 通讯作者:
    Liu XS
Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer.
  • DOI:
    10.1038/nsmb.2591
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Du, Zhou;Fei, Teng;Verhaak, Roel G. W.;Su, Zhen;Zhang, Yong;Brown, Myles;Chen, Yiwen;Liu, X. Shirley
  • 通讯作者:
    Liu, X. Shirley
MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes.
MmethylPurify:从单个肿瘤 DNA 甲基化组中进行肿瘤纯度解卷积和差异甲基化检测
  • DOI:
    10.1186/s13059-014-0419-x
  • 发表时间:
    2014-08-07
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Zheng X;Zhao Q;Wu HJ;Li W;Wang H;Meyer CA;Qin QA;Xu H;Zang C;Jiang P;Li F;Hou Y;He J;Wang J;Wang J;Zhang P;Zhang Y;Liu XS
  • 通讯作者:
    Liu XS
Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles.
  • DOI:
    10.1101/gr.201574.115
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Wang S;Zang C;Xiao T;Fan J;Mei S;Qin Q;Wu Q;Li X;Xu K;He HH;Brown M;Meyer CA;Liu XS
  • 通讯作者:
    Liu XS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaole Shirley Liu其他文献

Ultrasensitive detection of TCR hypervariable region in solid-tissue RNA-seq data
固体组织 RNA-seq 数据中 TCR 高变区的超灵敏检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Li;Taiwen Li;Binbin Wang;Ruoxu Dou;J. Pignon;T. Choueiri;S. Signoretti;Jun S. Liu;Xiaole Shirley Liu
  • 通讯作者:
    Xiaole Shirley Liu
Regulation of Human 3 (cid:1) -Hydroxysteroid Dehydrogenase (AKR1C4) Expression by the Liver X Receptor (cid:1)
肝脏 X 受体 (cid:1) 对人类 3 (cid:1) -羟基类固醇脱氢酶 (AKR1C4) 表达的调节
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. R. Stayrook;Pamela M. Rogers;R. Savkur;Yongjun Wang;Gabor Varga;Xin Bu;Tao Wei;Sunil Nagpal;Xiaole Shirley Liu;Thomas P. Burris
  • 通讯作者:
    Thomas P. Burris
Gibbs sampling and bioinformatics
吉布斯采样和生物信息学
  • DOI:
    10.1002/047001153x.g409319
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaole Shirley Liu
  • 通讯作者:
    Xiaole Shirley Liu
Single-Cell RNA Sequencing Reveals the Interplay between Circulating CD4 <sup>+</sup> T Cells, B Cells and Cancer-Associated Monocytes in Classic Hodgkin Lymphoma Treated with PD-1 Blockade
  • DOI:
    10.1182/blood-2023-187038
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Julia Paczkowska;Ming Tang;Kyle T. Wright;Li Song;Kelsey Luu;Vignesh Shanmugam;Emma L. Welsh;Jason L. Weirather;Kathleen Pfaff;Robert A. Redd;Zumla Cader;Elisa Mandato;Jing Ouyang;Gali Bai;Lee N. Lawton;Philippe Armand;Scott Rodig;Xiaole Shirley Liu;Margaret A. Shipp
  • 通讯作者:
    Margaret A. Shipp

Xiaole Shirley Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaole Shirley Liu', 18)}}的其他基金

Bioinformatics Technology to Characterize Tumor Infiltrating Immune Repertoires
生物信息学技术表征肿瘤浸润免疫库
  • 批准号:
    9507415
  • 财政年份:
    2018
  • 资助金额:
    $ 34.13万
  • 项目类别:
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
  • 批准号:
    9128287
  • 财政年份:
    2016
  • 资助金额:
    $ 34.13万
  • 项目类别:
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
  • 批准号:
    9350386
  • 财政年份:
    2016
  • 资助金额:
    $ 34.13万
  • 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
  • 批准号:
    10658868
  • 财政年份:
    2013
  • 资助金额:
    $ 34.13万
  • 项目类别:
Developing Informatics Technologies to Model Cancer Gene Regulation
开发信息学技术来模拟癌症基因调控
  • 批准号:
    8606997
  • 财政年份:
    2013
  • 资助金额:
    $ 34.13万
  • 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
  • 批准号:
    10443724
  • 财政年份:
    2013
  • 资助金额:
    $ 34.13万
  • 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
  • 批准号:
    10227097
  • 财政年份:
    2013
  • 资助金额:
    $ 34.13万
  • 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
  • 批准号:
    8229591
  • 财政年份:
    2012
  • 资助金额:
    $ 34.13万
  • 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
  • 批准号:
    8431756
  • 财政年份:
    2012
  • 资助金额:
    $ 34.13万
  • 项目类别:
Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics
从表观基因组学推断哺乳动物转录调控网络
  • 批准号:
    8536867
  • 财政年份:
    2011
  • 资助金额:
    $ 34.13万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.13万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了