Trinity: Transcriptome assembly for genetic and functional analysis of cancer

Trinity:用于癌症遗传和功能分析的转录组组装

基本信息

  • 批准号:
    8735908
  • 负责人:
  • 金额:
    $ 73.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-17 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): RNA-Seq studies indicate that the cancer transcriptome are shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially differerit than the reference or for detecting sequences from the cancer microbiome. Assembly first' (de novo) methods that combine reads into transcripts without any mapping are a compelling alternative. The assembled transcriptome can then be used to identify mutations, splicing patterns, expression levels, tumor-associated microbes, and - if collected from single cells - characterize tumor heterogeneity. There is thus an enormous need for computationally efficient, accurate and user friendly tools for transcriptome reconstruction and analysis in cancer. Trinity, first released in mid-2011 and freely available as Open Source, is the leading software for de novo RNA-Seq assembly, with over 16,000 downloads, 177 literature citations, and a host of modules for downstream analyses, contributed by 3rd party developers. While widely-adopted in the general research community, Trinity (and any de novo RNA-Seq assembly) is only now emerging in the cancer domain. Here, we will enhance and maintain Trinity as a leading tool for cancer transcriptomics. We will tailor analytic modules for critical tasks in cancer biology, working with a network of cancer researchers on Driving Cancer Projects (Aim 1). We will continue to update the Trinity software to enhance the core algorithm, leverage new sequencing technologies as they arise, and incorporate additional 3rd party tools (Aim 2). We will enhance the Trinity software for different computational environments, including user-friendly interfaces to high performance computing infrastructure freely available to any NCI-funded researcher (Aim 3). We will grow the Trinity cancer user community, using online and in- person training and support (Aim 4), to allow any cancer researcher to leverage it.
描述(由申请人提供):RNA-Seq研究表明,癌症转录组是由遗传变化、基因转录变异、mRNA加工、编辑和稳定性以及癌症微生物组形成的。破译这种变异并理解其对肿瘤发生的影响需要复杂的计算分析。大多数RNA-Seq分析依赖于首先将短片段映射到参考基因组的方法,然后将它们与带注释的转录本进行比较或将它们组装起来。然而,当癌症基因组与参考基因组存在本质差异或用于检测癌症微生物组序列时,这种策略可能受到限制。Assembly first’(de novo)方法是一种引人注目的替代方案,它将读取的数据组合到转录本中,而不需要任何映射。组装的转录组可以用来鉴定突变、剪接模式、表达水平、肿瘤相关微生物,如果从单个细胞收集,还可以表征肿瘤异质性。因此,对计算效率高、准确和用户友好的工具的巨大需求用于癌症转录组重建和分析。《Trinity》于2011年年中首次免费发行

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AVIV REGEV其他文献

AVIV REGEV的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AVIV REGEV', 18)}}的其他基金

Core B: Data Management and Bioinformatics Core
核心 B:数据管理和生物信息学核心
  • 批准号:
    10207346
  • 财政年份:
    2017
  • 资助金额:
    $ 73.31万
  • 项目类别:
Clinical implementation of single cell tumor transcriptome analysis
单细胞肿瘤转录组分析的临床实施
  • 批准号:
    9035651
  • 财政年份:
    2016
  • 资助金额:
    $ 73.31万
  • 项目类别:
DNA microscopy for spatially resolved genomic analyses in intact tissue
DNA 显微镜用于完整组织的空间分辨基因组分析
  • 批准号:
    9360633
  • 财政年份:
    2016
  • 资助金额:
    $ 73.31万
  • 项目类别:
An integrated multiplexed genomic assay for low input clinical samples1
适用于低输入临床样品的综合多重基因组检测1
  • 批准号:
    9305830
  • 财政年份:
    2015
  • 资助金额:
    $ 73.31万
  • 项目类别:
Comprehensive Classification Of Neuronal Subtypes By Single Cell Transcriptomics
单细胞转录组学对神经元亚型的综合分类
  • 批准号:
    8822370
  • 财政年份:
    2014
  • 资助金额:
    $ 73.31万
  • 项目类别:
Comprehensive Classification Of Neuronal Subtypes By Single Cell Transcriptomics
单细胞转录组学对神经元亚型的综合分类
  • 批准号:
    9324097
  • 财政年份:
    2014
  • 资助金额:
    $ 73.31万
  • 项目类别:
Trinity: Transcriptome assembly for genetic and functional analysis of cancer
Trinity:用于癌症遗传和功能分析的转录组组装
  • 批准号:
    8606947
  • 财政年份:
    2013
  • 资助金额:
    $ 73.31万
  • 项目类别:
Trinity: Transcriptome assembly for genetic and functional analysis of cancer
Trinity:用于癌症遗传和功能分析的转录组组装
  • 批准号:
    9126450
  • 财政年份:
    2013
  • 资助金额:
    $ 73.31万
  • 项目类别:
Center for Cell Circuits
细胞电路中心
  • 批准号:
    8116814
  • 财政年份:
    2011
  • 资助金额:
    $ 73.31万
  • 项目类别:
Center for Cell Circuits
细胞电路中心
  • 批准号:
    8920885
  • 财政年份:
    2011
  • 资助金额:
    $ 73.31万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 73.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了