Image-guided tumor drug delivery by ultrasound-detected heat-released liposome
通过超声检测的热释放脂质体进行图像引导的肿瘤药物递送
基本信息
- 批准号:8773087
- 负责人:
- 金额:$ 42.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-09 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAntineoplastic AgentsBehaviorBlood VesselsBody TemperatureBuffersCaliberCell membraneCellsChemotherapy-Oncologic ProcedureClinicalContrast MediaDoseDoxorubicinDoxorubicin Hydrochloride LiposomeDrug Delivery SystemsDrug ExposureDrug ExtravasationDrug resistanceDrug toxicityDrug usageEncapsulatedEnvironmentExposure toFluorescence MicroscopyFocused Ultrasound TherapyGoalsHealth SciencesHeatingHigh Pressure Liquid ChromatographyHyperthermiaHypoxiaImageIn VitroInduced HyperthermiaIntercellular FluidInvestigationLearningLibrariesLiposomesLocal HyperthermiaMagnetic ResonanceMeasuresMediatingMonitorNormal tissue morphologyOklahomaOutcomePathway interactionsPerfusionPermeabilityPharmaceutical PreparationsPhysiciansPhysiologicalRecurrenceResearchSpatial DistributionSpecificitySpeedStructureTechnologyTemperatureTestingTimeTissuesTrainingTranslational ResearchTranslationsTreatment EfficacyTumor TissueUltrasonographyUniversitiesantitumor drugbasecold temperaturecost effectivenessdesigndosagedrug distributionexperiencegraduate studentimprovedin vivoinnovationmouse modelnanocarrierneoplastic cellnovelperfluoropentanepressurepreventprogramspublic health relevanceresponsesuccesstumortumor specificityundergraduate studentuptake
项目摘要
DESCRIPTION: Cancer chemotherapy employs systemic delivery of antitumor drugs with limited specificity, causing toxic side effects in normal tissues and inefficient/insufficient drug
delivery to tumor cells, leading to recurrence. To address these problems, liposomal stealth drug delivery systems (e.g. Doxil) have been developed to selectively accumulate in tumors, permitting enhanced intratumoral drug delivery while reducing drug exposure and toxicity to normal tissue. However, available clinically-approved nanocarriers release their payload only within the perivascular space of tumors, impeding or preventing distribution to poorly-perfused remote cells in the tumor core that contribute to drug resistance and tumor recurrence. Thus the tumor-directed dose escalations achieved to date via stealth liposome technology have not yet improved treatment efficacy. To overcome these limitations, the long-term goal of our research is to optimize and provide uniform intratumoral delivery of antitumor drugs with real-time control,
thereby providing physicians more precise dosing control. In preliminary studies we achieved improved intratumoral distribution of systemically administered doxorubicin (Dox), within tumor periphery and core alike, by inducing rapid intravascular Dox release from Low Temperature-Sensitive Liposomes (LTSL), a technology that permits induction of liposomal drug release using mild local elevations in tissue temperature. The objective of the proposed project is to test
the feasibility of and validate an innovative approach for homogeneous, tightly-controlled intratumor delivery of antineoplastic drugs using novel ultrasound-imageable echogenic LTSL (E-LTSL), that will permit image-guided drug delivery (IGDD)-based therapy. We hypothesize that E-LTSL will permit real-time control and monitoring of the release of liposome-encapsulated drugs. By combination with local hyperthermia applied precisely using High-intensity Focused Ultrasound (HIFU), this will allow thermally-induced liposomal drug release, providing enhanced intratumoral drug delivery to otherwise inaccessible tumor cells. The concept builds upon our expertise in biodegradable LTSL synthesis and their application in magnetic resonance-high intensity focused ultrasound- based IGDD. The Specific Aims are: 1: To optimize in vitro and in vivo stability, release and imageability of E- LTSL. 2: To determine E-LTSL-mediated doxorubicin delivery, distribution and efficacy in vivo, using a mouse model. This cutting-edge translational research will enhance the research environment and capabilities of our Center for Veterinary Health Sciences at Oklahoma State University, will provide a rich training and learning experience for our graduate and undergraduate students, and will provide an innovative pathway to improve cancer chemotherapy outcomes by strategically modifying currently approved therapies.
描述:癌症化学疗法采用特异性有限的抗肿瘤药物的全身递送,导致正常组织中的毒性副作用和药物效率低下
传递到肿瘤细胞,导致复发。为了解决这些问题,已经开发出脂质体隐形药物递送系统(例如Doxil)以选择性地积累肿瘤,从而可以增强肿瘤内药物的递送,同时减少对正常组织的药物暴露和毒性。然而,可用的临床批准的纳米载体仅在肿瘤周血管周围释放其有效载荷,阻碍或阻止在肿瘤核中分布到肿瘤核心较差的偏远细胞,从而有助于耐药性和肿瘤复发。因此,迄今为止通过隐形脂质体技术实现的肿瘤定向剂量升级尚未提高治疗功效。为了克服这些局限
从而为医生提供更精确的剂量控制。在初步研究中,我们通过诱导使用脂质体释放的技术释放脂肪体释放的技术,利用脂质体释放的技术释放了脂质体释放的技术,从而改善了肿瘤周围和核心中系统施用的肿瘤内分布,在肿瘤周围和核心中的肿瘤内分布。拟议项目的目的是测试
使用新型的超声可刺激的回声LTSL(E-LTSL),可以允许图像引导的药物输送(IGDD)基于基于图像引导的药物(IGDD) - 基于基于图像引导的治疗方法,并验证了一种均质,紧密控制的抗肿瘤药物的均匀,紧密控制的肿瘤内药物的可行性和验证方法。我们假设E-LTSL将允许实时控制脂质体封装药物的释放。通过与局部高温使用高强度聚焦超声(HIFU)相结合,这将允许热诱导的脂质体药物释放,从而提供了增强的肿瘤内药物递送,从而使其他无法接近的肿瘤细胞。该概念基于我们在可生物降解的LTSL合成中的专业知识及其在基于磁共振高强度的基于超声的IGDD中的应用。具体目的是:1:优化E-LTSL的体外和体内稳定性,释放和可成像性。 2:使用小鼠模型确定E-LTSL介导的阿霉素的递送,分布和疗效。这项尖端的翻译研究将增强俄克拉荷马州立大学兽医健康科学中心的研究环境和能力,将为我们的研究生和本科生提供丰富的培训和学习经验,并将通过战略性地修改当前认可的治疗疗法,为改善癌症化学疗法的成果提供创新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashish Ranjan其他文献
Ashish Ranjan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashish Ranjan', 18)}}的其他基金
Role of histotripsy synergized CD40 signaling in the re-engineering of cold tumors
组织解剖协同 CD40 信号传导在冷肿瘤再造中的作用
- 批准号:
10390557 - 财政年份:2022
- 资助金额:
$ 42.28万 - 项目类别:
Novel focused ultrasound enhanced calreticulin-nanoparticle for immune primed melanoma immunotherapy
用于免疫引发黑色素瘤免疫治疗的新型聚焦超声增强钙网蛋白纳米颗粒
- 批准号:
10177969 - 财政年份:2019
- 资助金额:
$ 42.28万 - 项目类别:
Novel focused ultrasound enhanced calreticulin-nanoparticle for immune primed melanoma immunotherapy
用于免疫引发黑色素瘤免疫治疗的新型聚焦超声增强钙网蛋白纳米颗粒
- 批准号:
10627822 - 财政年份:2019
- 资助金额:
$ 42.28万 - 项目类别:
Novel focused ultrasound enhanced calreticulin-nanoparticle for immune primed melanoma immunotherapy
用于免疫引发黑色素瘤免疫治疗的新型聚焦超声增强钙网蛋白纳米颗粒
- 批准号:
10434835 - 财政年份:2019
- 资助金额:
$ 42.28万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
- 批准号:
10637962 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别:
Design and implementation of a social cognitive theory-based medication adherence coaching intervention
基于社会认知理论的药物依从性辅导干预的设计与实施
- 批准号:
10644251 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别:
Defining kinase interaction pathways to enhance anti-cancer efficacy and minimize associated morbidities of kinase inhibitor drugs.
定义激酶相互作用途径,以增强抗癌功效并最大限度地减少激酶抑制剂药物的相关发病率。
- 批准号:
10644554 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别: