Improving genotype call accuracy
提高基因型识别准确性
基本信息
- 批准号:8707516
- 负责人:
- 金额:$ 34.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-07 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:African AmericanAlgorithmsBenchmarkingCardiovascular DiseasesComputer softwareDataData SecurityData SetDetectionDiabetes MellitusDiagnosisDiseaseEuropeanFloodsGenerationsGeneticGenetic DeterminismGenotypeGoldHaplotypesHealthHispanicsIndividualMethodsModelingNucleotidesOutcomeParentsPhasePopulationPreventionPublishingResearchResearch PersonnelRiskSample SizeSamplingSecureTechnologyUnited StatesVariantX Chromosomedata sharingdesigndisorder riskgenetic pedigreegenetic variantgenome sequencingimprovednext generationnoveloffspringopen sourcesuccess
项目摘要
DESCRIPTION (provided by applicant): New sequencing technologies and increasingly dense SNP arrays are generating a flood of genetic data. Sample sizes are increasing and the spectrum of genotyped variation is broadening to include structural and multi-allelic variants. This research will develop improved genotype calling methods that are designed for these data and that use information from large sample sizes and from related individuals in novel and powerful ways. The result will be improved genotype data accuracy which will benefit all research on the genetic determinants of health and disease.
描述(由申请人提供):新的测序技术和越来越密集的SNP阵列正在产生大量的遗传数据。样本量正在增加,基因型变异的范围正在扩大,包括结构和多等位基因变异。这项研究将开发改进的基因型调用方法,这些方法是为这些数据设计的,并以新颖而有力的方式使用来自大样本和相关个体的信息。结果将提高基因型数据的准确性,这将有利于所有关于健康和疾病的遗传决定因素的研究。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Family studies of type 1 diabetes reveal additive and epistatic effects between MGAT1 and three other polymorphisms.
1 型糖尿病的家族研究揭示了 MGAT1 和其他三种多态性之间的加性和上位效应。
- DOI:10.1038/gene.2014.7
- 发表时间:2014
- 期刊:
- 影响因子:5
- 作者:Yu,Z;Li,CF;Mkhikian,H;Zhou,RW;Newton,BL;Demetriou,M
- 通讯作者:Demetriou,M
Pseudosibship methods in the case-parents design.
- DOI:10.1002/sim.4397
- 发表时间:2011-11-30
- 期刊:
- 影响因子:2
- 作者:Yu, Zhaoxia;Deng, Li
- 通讯作者:Deng, Li
Family-based association tests using genotype data with uncertainty.
- DOI:10.1093/biostatistics/kxr045
- 发表时间:2012-04
- 期刊:
- 影响因子:2.1
- 作者:Zhaoxia Yu
- 通讯作者:Zhaoxia Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRIAN LEE BROWNING其他文献
BRIAN LEE BROWNING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRIAN LEE BROWNING', 18)}}的其他基金
Computational methods for large-scale genotype data
大规模基因型数据的计算方法
- 批准号:
10409820 - 财政年份:2015
- 资助金额:
$ 34.07万 - 项目类别:
Improving genotype accuracy and haplotypic analysis for genome-wide studies
提高全基因组研究的基因型准确性和单倍型分析
- 批准号:
7632327 - 财政年份:2009
- 资助金额:
$ 34.07万 - 项目类别:
Improving genotype accuracy and haplotypic analysis for genome-wide studies
提高全基因组研究的基因型准确性和单倍型分析
- 批准号:
8149957 - 财政年份:2009
- 资助金额:
$ 34.07万 - 项目类别:
Improving genotype accuracy and haplotypic analysis for genome-wide studies
提高全基因组研究的基因型准确性和单倍型分析
- 批准号:
7906967 - 财政年份:2009
- 资助金额:
$ 34.07万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.07万 - 项目类别:
Research Grant