Rapid non-invasive prenatal Down syndrome detection using a DNA-molecule counter

使用 DNA 分子计数器快速无创产前唐氏综合症检测

基本信息

  • 批准号:
    8601194
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Rapid non-invasive prenatal Down syndrome detection using a DNA-molecule counter Abstract Down syndrome (DS) is the most common survivable genetic disorder affecting 1 in 691, or approximately 6,000 live births in the United States annually. Current non-invasive prenatal screening tests based on ultrasound and blood sample measurements are inaccurate, and confirmatory tests such as chorionic villus sampling and amniocentesis are invasive procedures that can cause miscarriage. Recently, a new non-invasive massively parallel sequencing test to detect trisomy 21 in the fetal DNA present in maternal plasma has become available. Although the approach produces a definitive diagnosis for aneuploidy without risk to the fetus, the test is expensive, and expectant parents usually have a long wait time of ten days or more. To improve the current method, our objective is to develop a faster and cheaper single molecule counting system to detect fetal aneuploidy from maternal plasma DNA. We recently demonstrated a novel approach to count single molecules of DNA. A collection of sequence barcodes is used to randomly label individual DNA molecules, and after amplification, the number of different barcodes can be easily detected and counted to reveal the number of copies of identical molecules originally present. Thus, we transform the difficult task of counting individual copies of identical molecules into a simple one of detecting the number of different barcodes present. In our published work, we used a microarray detector to count barcodes, and showed precise and accurate digital, absolute quantitation of chromosomal copies starting with very low, sub-nanograms of sample input. For this proposed pilot study, we will further define the barcoding and amplification reaction conditions, and construct a suitable microarray barcode counter to enable the detection of very small increases of additional copies of chromosome 21. The measurement accuracy and statistical confidence of our detection method will be thoroughly investigated to demonstrate feasibility for a subsequent commercial product development phase. Our company is composed of key leaders in the field including Stephen Fodor who was the first to invent and develop microarray technology, and Stephen Quake who was the first to demonstrate single molecule DNA sequencing and a non-invasive prenatal test for Down syndrome. Both founders will play critical roles in the development and commercialization of this novel technology. Additionally, we have established collaborations with Ronald Davis at the Stanford University Genome Technology Center, giving us access to instruments and expertise available at this world class research facility.
使用DNA分子计数器的快速非侵入性产前唐氏综合征检测摘要唐氏综合征(DS)是最常见的存活遗传性疾病,每年影响1/691,或在美国约6,000活产婴儿。目前基于超声波和血液样本测量的非侵入性产前筛查测试是不准确的,并且诸如绒毛膜绒毛取样和胎盘穿刺术等确认测试是侵入性程序,可能导致流产。最近,一种新的非侵入性大规模平行测序测试,以检测母体血浆中存在的胎儿DNA中的21三体已经成为可用。虽然这种方法可以对非整倍体进行明确的诊断,而不会对胎儿造成风险,但这种测试很昂贵,而且准父母通常要等待10天或更长时间。为了改进目前的方法,我们的目标是开发一种更快,更便宜的单分子计数系统,从母体血浆DNA检测胎儿非整倍体。我们最近展示了一种新的方法来计算DNA的单分子。序列条形码的集合用于随机标记单个DNA分子,并且在扩增后,可以容易地检测和计数不同条形码的数量,以揭示最初存在的相同分子的拷贝数。因此,我们将计数相同分子的单个拷贝的困难任务转化为检测存在的不同条形码的数量的简单任务。在我们已发表的工作中,我们使用微阵列检测器来计数条形码,并从非常低的亚纳克样品输入开始显示染色体拷贝的精确和准确的数字绝对定量。对于这项拟议的初步研究,我们将进一步定义条形码和扩增反应条件,并构建合适的微阵列条形码计数器,以检测21号染色体额外拷贝的非常小的增加。我们的检测方法的测量精度和统计置信度将被彻底研究,以证明后续商业产品开发阶段的可行性。我们公司由该领域的主要领导者组成,包括第一个发明和开发微阵列技术的Stephen Fodor和第一个展示单分子DNA测序和唐氏综合症非侵入性产前检测的Stephen Quake。两位创始人将在这项新技术的开发和商业化中发挥关键作用。此外,我们还与斯坦福大学基因组技术中心的罗纳德戴维斯建立了合作关系,使我们能够使用这个世界级研究机构提供的仪器和专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glenn Fu其他文献

Glenn Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glenn Fu', 18)}}的其他基金

Rapid non-invasive prenatal Down syndrome detection using a DNA-molecule counter
使用 DNA 分子计数器快速无创产前唐氏综合症检测
  • 批准号:
    8449046
  • 财政年份:
    2013
  • 资助金额:
    $ 9.5万
  • 项目类别:
A kit to detect and count individual DNA molecules of interest
用于检测和计数感兴趣的单个 DNA 分子的试剂盒
  • 批准号:
    8446255
  • 财政年份:
    2013
  • 资助金额:
    $ 9.5万
  • 项目类别:
A molecular barcoding sequencing kit for highly efficient and accurate single cel
高效准确单细胞分子条形码测序试剂盒
  • 批准号:
    8780513
  • 财政年份:
    2013
  • 资助金额:
    $ 9.5万
  • 项目类别:
A molecular barcoding sequencing kit for highly efficient and accurate single cel
高效准确单细胞分子条形码测序试剂盒
  • 批准号:
    8904694
  • 财政年份:
    2013
  • 资助金额:
    $ 9.5万
  • 项目类别:
A kit for single cell gene expression analysis
单细胞基因表达分析试剂盒
  • 批准号:
    8446257
  • 财政年份:
    2013
  • 资助金额:
    $ 9.5万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了